A059822 Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^5 *product_{i=1..t} (1-x^i) ).
0, 1, 6, 20, 55, 119, 246, 435, 766, 1211, 1926, 2807, 4193, 5766, 8161, 10821, 14711, 18820, 24925, 31009, 39984, 48895, 61609, 73844, 91905, 108264, 132400, 154641, 186462, 214772, 257118, 292749, 346430, 392499, 459424, 515579
Offset: 0
Keywords
Links
- G. E. Andrews, Some debts I owe, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
Programs
-
Maple
Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=5