A059823 Expansion of series related to Liouville's Last Theorem: g.f. sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^6 *product_{i=1..t} (1-x^i) ).
0, 1, 7, 27, 83, 202, 455, 889, 1682, 2892, 4894, 7694, 12090, 17822, 26411, 37206, 52730, 71447, 97984, 128714, 171421, 220064, 285963, 359204, 458506, 565347, 708665, 862163, 1064302, 1276474, 1558090, 1845874, 2226044, 2614188
Offset: 0
Keywords
Links
- G. E. Andrews, Some debts I owe, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
Programs
-
Maple
Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=6