cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059836 Triangle T(s,t), s >= 1, 1 <= t <= s (see formula line).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 9, 18, 1, 4, 16, 48, 144, 1, 5, 25, 100, 400, 1200, 1, 6, 36, 180, 900, 3600, 14400, 1, 7, 49, 294, 1764, 8820, 44100, 176400, 1, 8, 64, 448, 3136, 18816, 112896, 564480, 2822400, 1, 9, 81, 648, 5184, 36288, 254016, 1524096, 9144576
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2001

Keywords

Examples

			Triangle begins:
  1;
  1,1;
  1,2,4;
  1,3,9,18;
  ...
		

References

  • S. G. Mikhlin, Constants in Some Inequalities of Analysis, Wiley, NY, 1986, see p. 59.

Crossrefs

Cf. A059837.

Programs

  • Maple
    T := proc(s,t) option remember: if s=1 or t=1 then RETURN(1) fi: if t>1 and t mod 2 = 1 then RETURN(product((s-i)^2, i=1..(t-1)/2)) else RETURN((s-t/2)*product((s-i)^2, i=1..t/2-1)) fi: end: for s from 1 to 15 do for t from 1 to s do printf(`%d,`, T(s,t)) od:od:
  • Mathematica
    T[s_, t_] := If[OddQ[t], Times @@ (s - Range[(t - 1)/2])^2, Times @@ (s - Range[t/2 - 1])^2*(s - t/2)];
    Table[T[s, t], {s, 1, 15}, {t, 1, s}] // Flatten (* Jean-François Alcover, Apr 29 2023 *)

Formula

T(s, t) = (s-1)^2*(s-2)^2*...*(s-(t-1)/2)^2 if t odd, else (s-1)^2*(s-2)^2*...*(s-t/2+1)^2*(s-t/2).

Extensions

More terms from James Sellers, Feb 26 2001 and from Larry Reeves (larryr(AT)acm.org), Feb 26 2001