A059836 Triangle T(s,t), s >= 1, 1 <= t <= s (see formula line).
1, 1, 1, 1, 2, 4, 1, 3, 9, 18, 1, 4, 16, 48, 144, 1, 5, 25, 100, 400, 1200, 1, 6, 36, 180, 900, 3600, 14400, 1, 7, 49, 294, 1764, 8820, 44100, 176400, 1, 8, 64, 448, 3136, 18816, 112896, 564480, 2822400, 1, 9, 81, 648, 5184, 36288, 254016, 1524096, 9144576
Offset: 1
Examples
Triangle begins: 1; 1,1; 1,2,4; 1,3,9,18; ...
References
- S. G. Mikhlin, Constants in Some Inequalities of Analysis, Wiley, NY, 1986, see p. 59.
Crossrefs
Cf. A059837.
Programs
-
Maple
T := proc(s,t) option remember: if s=1 or t=1 then RETURN(1) fi: if t>1 and t mod 2 = 1 then RETURN(product((s-i)^2, i=1..(t-1)/2)) else RETURN((s-t/2)*product((s-i)^2, i=1..t/2-1)) fi: end: for s from 1 to 15 do for t from 1 to s do printf(`%d,`, T(s,t)) od:od:
-
Mathematica
T[s_, t_] := If[OddQ[t], Times @@ (s - Range[(t - 1)/2])^2, Times @@ (s - Range[t/2 - 1])^2*(s - t/2)]; Table[T[s, t], {s, 1, 15}, {t, 1, s}] // Flatten (* Jean-François Alcover, Apr 29 2023 *)
Formula
T(s, t) = (s-1)^2*(s-2)^2*...*(s-(t-1)/2)^2 if t odd, else (s-1)^2*(s-2)^2*...*(s-t/2+1)^2*(s-t/2).
Extensions
More terms from James Sellers, Feb 26 2001 and from Larry Reeves (larryr(AT)acm.org), Feb 26 2001