cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059837 Diagonal T(s,s) of triangle A059836.

Original entry on oeis.org

1, 1, 4, 18, 144, 1200, 14400, 176400, 2822400, 45722880, 914457600, 18441561600, 442597478400, 10685567692800, 299195895398400, 8414884558080000, 269276305858560000, 8646761377013760000, 311283409572495360000
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2001

Keywords

References

  • S. G. Mikhlin, Constants in Some Inequalities of Analysis, Wiley, NY, 1986, see p. 59.

Crossrefs

Cf. A059836.

Programs

  • Maple
    T := proc(s,t) option remember: if s=1 or t=1 then RETURN(1) fi: if t>1 and t mod 2 = 1 then RETURN(product((s-i)^2, i=1..(t-1)/2)) else RETURN((s-t/2)*product((s-i)^2, i=1..t/2-1)) fi: end: for s from 1 to 50 do printf(`%d,`, T(s,s)) od:
  • Mathematica
    a[n_] := (n-1)! Binomial[n-1, Quotient[n-1, 2]];
    Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Apr 29 2023 *)

Formula

T(s, s) = (s-1)^2 * T(s-1, s-1) / floor(s/2) - Larry Reeves.
a(n) = Sum_{k=0..n} (-1)^(n+k)*C(n, k)*Sum_{i=0..n} C(n, floor(i/2))*k^i. - Paul Barry, Aug 05 2004
a(n) = (n-1)!*binomial(n-1,floor(n-1,2)), n>=1.
E.g.f. is the integral of the o.g.f. of A001405. With offset 0: e.g.f. is o.g.f. of A001405.
Conjecture: +(n+1)*a(n) -2*n*a(n-1) -4*n*(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 24 2012

Extensions

More terms from James Sellers, Feb 26 2001 and from Larry Reeves (larryr(AT)acm.org), Feb 26 2001