A059859 Sum of squares of first n quarter-squares (A002620).
0, 0, 1, 5, 21, 57, 138, 282, 538, 938, 1563, 2463, 3759, 5523, 7924, 11060, 15156, 20340, 26901, 35001, 45001, 57101, 71742, 89166, 109902, 134238, 162799, 195923, 234339, 278439, 329064, 386664, 452200, 526184, 609705, 703341
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,0,3,-1).
Crossrefs
Cf. A002620.
Programs
-
Maple
A059859 := n->add(A002620(i)^2,i=0..n); f1 := n->1/160*(n-1)*(1+n)*(2*n^3+5*n^2+2*n-5); f2 := n->1/160*n*(n+2)*(2*n^3+n^2-2*n+4); A059859 := n-> if n mod 2 = 0 then f2(n) else f1(n); fi;
-
Mathematica
a[n_] := Sum[Floor[i^2/4]^2, {i,1,n}]; Table[a[n], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 20 2012 *)
Formula
If n is even, a(n) = n*(n+2)*(2*n^3+n^2-2*n+4)/160; if n is odd, a(n) = (n^2-1)*(2*n^3+5*n^2+2*n-5)/160.
From R. J. Mathar, Feb 15 2010: (Start)
a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
G.f.: x^2*(1+2*x+6*x^2+2*x^3+x^4) / ((1+x)^3*(x-1)^6). (End)
a(n) = Sum_{i=1..n} floor(i^2/4)^2. - Enrique Pérez Herrero, Mar 20 2012
a(n) = (2*n*(2*n^4+5*n^3-5*n+3) + 5*(2*n*(n+1)-1)*(-1)^n + 5)/320. - Bruno Berselli, Mar 21 2012