cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059859 Sum of squares of first n quarter-squares (A002620).

Original entry on oeis.org

0, 0, 1, 5, 21, 57, 138, 282, 538, 938, 1563, 2463, 3759, 5523, 7924, 11060, 15156, 20340, 26901, 35001, 45001, 57101, 71742, 89166, 109902, 134238, 162799, 195923, 234339, 278439, 329064, 386664, 452200, 526184, 609705, 703341
Offset: 0

Views

Author

N. J. A. Sloane, Feb 26 2001

Keywords

Crossrefs

Cf. A002620.

Programs

  • Maple
    A059859 := n->add(A002620(i)^2,i=0..n);
    f1 := n->1/160*(n-1)*(1+n)*(2*n^3+5*n^2+2*n-5); f2 := n->1/160*n*(n+2)*(2*n^3+n^2-2*n+4); A059859 := n-> if n mod 2 = 0 then f2(n) else f1(n); fi;
  • Mathematica
    a[n_] := Sum[Floor[i^2/4]^2, {i,1,n}]; Table[a[n], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 20 2012 *)

Formula

If n is even, a(n) = n*(n+2)*(2*n^3+n^2-2*n+4)/160; if n is odd, a(n) = (n^2-1)*(2*n^3+5*n^2+2*n-5)/160.
From R. J. Mathar, Feb 15 2010: (Start)
a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
G.f.: x^2*(1+2*x+6*x^2+2*x^3+x^4) / ((1+x)^3*(x-1)^6). (End)
a(n) = Sum_{i=1..n} floor(i^2/4)^2. - Enrique Pérez Herrero, Mar 20 2012
a(n) = (2*n*(2*n^4+5*n^3-5*n+3) + 5*(2*n*(n+1)-1)*(-1)^n + 5)/320. - Bruno Berselli, Mar 21 2012