cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059876 a(n) = bin_prime_sum(n).

Original entry on oeis.org

2, 1, 3, 3, 5, 7, 9, -1, 1, 3, 5, 5, 7, 9, 11, 3, 5, 7, 9, 9, 11, 13, 15, 13, 15, 17, 19, 19, 21, 23, 25, -7, -5, -3, -1, -1, 1, 3, 5, 3, 5, 7, 9, 9, 11, 13, 15, 7, 9, 11, 13, 13, 15, 17, 19, 17, 19, 21, 23, 23, 25, 27, 29, -3, -1, 1, 3, 3, 5, 7, 9, 7, 9, 11, 13, 13, 15, 17, 19, 11, 13, 15, 17, 17, 19, 21, 23, 21, 23, 25, 27, 27, 29, 31, 33, 19, 21, 23, 25, 25, 27, 29, 31, 29, 31
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2001

Keywords

Comments

From R. J. Mathar, Nov 12 2011: (Start)
The function bin_prime_sum of an argument n is a sum of three numbers. Let s = A000523(n) be the exponent of the largest power of 2 less than or equal to n and prime=A000040. Then the three terms are:
i) (-1)^(n+1);
ii) sum_{i=1..s} prime(i) * (1 + (-1)^[n/2^i] ); where [..] is the floor bracket;
iii) 1 (if n=1), otherwise prime(s) (if s even) or 0 (if s odd). (End)

Crossrefs

Programs

  • Maple
    with(numtheory); bin_prime_sum := proc(n) local i,s; s := floor_log_2(n); RETURN(((-1)^(n+1)) + add( (((-1)^(floor(n/(2^i))+1))*ithprime(i)),i=1..s) + (`if`((1 = n),1,((`mod`((s+1),2))*ithprime(s)))) ); end;
  • Mathematica
    a[n_] := With[{s = Floor[Log[2, n]]}, (-1)^(n+1) + Sum[(-1)^(Floor[n/2^i] + 1)*Prime[i], {i, 1, s}] + If[1 == n, 1, Mod[s+1, 2]*Prime[s]]]; Array[a, 105] (* Jean-François Alcover, Mar 07 2016, adapted from Maple *)

Formula

a(A059873(n)) = A000040(n).

A059879 Those n for which the absolute value of A059878[n] is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 16, 18, 20, 21, 24, 27, 31, 34, 37, 39, 41, 43, 46, 47, 48, 50, 51, 53, 54, 55, 57, 60, 61, 65, 67, 68, 71, 78, 83, 84, 86, 87, 101, 103, 105, 106, 109, 112, 114, 117, 126, 127, 128, 129, 141, 143, 145, 154, 155, 158, 161, 168, 179, 181
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2001

Keywords

Comments

Of the first 511 terms of A059878, 128 are primes.

Crossrefs

Cf. A059877.

Programs

  • Maple
    positions(true,map(isprime,map(abs, A059878))); # positions function given in A059649.
Showing 1-2 of 2 results.