A059895 Table a(i,j) = product prime[k]^(Ei[k] AND Ej[k]) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; AND is the bitwise operation on binary representation of the exponents.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
Offset: 1
Examples
The top left 18 X 18 corner of the array: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9 1, 2, 1, 1, 5, 2, 1, 2, 1, 10, 1, 1, 1, 2, 5, 1, 1, 2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1 1, 1, 3, 4, 1, 3, 1, 4, 1, 1, 1, 12, 1, 1, 3, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1 1, 2, 1, 1, 1, 2, 7, 2, 1, 2, 1, 1, 1, 14, 1, 1, 1, 2 1, 1, 3, 1, 5, 3, 1, 1, 1, 5, 1, 3, 1, 1, 15, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1 1, 2, 1, 1, 1, 2, 1, 2, 9, 2, 1, 1, 1, 2, 1, 1, 1, 18 A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 AND 3)* 3^(3 AND 5) = 2^1*3^1 = 6.
Links
Programs
-
Mathematica
a[i_, i_] := i; a[i_, j_] := Module[{f1 = FactorInteger[i], f2 = FactorInteger[j], e1, e2}, Scan[(e1[#[[1]]] = #[[2]])&, f1]; Scan[(e2[#[[1]]] = #[[2]])&, f2]; Times @@ (#^BitAnd[e1[#], e2[#]]& /@ Intersection[f1[[All, 1]], f2[[All, 1]]]) ]; Table[a[i - j + 1, j], {i, 1, 15}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
-
Scheme
(define (A059895 n) (A059895bi (A002260 n) (A004736 n))) (define (A059895bi a b) (let loop ((a a) (b b) (m 1)) (cond ((= 1 a) m) ((= 1 b) m) ((equal? (A020639 a) (A020639 b)) (loop (A028234 a) (A028234 b) (* m (expt (A020639 a) (A004198bi (A067029 a) (A067029 b)))))) ((< (A020639 a) (A020639 b)) (loop (A028234 a) b m)) (else (loop a (A028234 b) m))))) ;; Antti Karttunen, Apr 11 2017
Formula
From Antti Karttunen, Apr 11 2017: (Start)
(End)
Extensions
Data section extended to 120 terms by Antti Karttunen, Apr 11 2017
Comments