A059940 Smallest prime p such that x = n is a solution mod p of x^3 = 2, or 0 if no such prime exists.
3, 5, 31, 41, 107, 11, 17, 727, 499, 443, 863, 439, 457, 3373, 23, 1637, 53, 6857, 31, 47, 5323, 811, 6911, 919, 29, 19681, 439, 739, 13499, 29789, 43, 7187, 43, 461, 23327, 50651, 59, 2579, 2909, 22973, 2179, 15901, 14197, 293, 1187, 34607, 11059
Offset: 2
Keywords
Examples
a(2) = 3, since 2 is a solution mod 3 of x^3 = 2 and 2 is not a solution mod p of x^3 = 2 for prime p = 2. Although 2^3 = 2 mod 2, prime 2 is excluded because 0 < 2 and 2 = 0 mod 2. a(5) = 41, since 5 is a solution mod 41 of x^3 = 2 and 5 is not a solution mod p of x^3 = 2 for primes p < 41. Although 5^3 = 2 mod 3, prime 3 is excluded because 3 < 5 and 5 = 2 mod 3.
Formula
If n^3-2 has prime factors > n, then a(n) = least of these prime factors, else a(n) = 0.
Comments