cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059940 Smallest prime p such that x = n is a solution mod p of x^3 = 2, or 0 if no such prime exists.

Original entry on oeis.org

3, 5, 31, 41, 107, 11, 17, 727, 499, 443, 863, 439, 457, 3373, 23, 1637, 53, 6857, 31, 47, 5323, 811, 6911, 919, 29, 19681, 439, 739, 13499, 29789, 43, 7187, 43, 461, 23327, 50651, 59, 2579, 2909, 22973, 2179, 15901, 14197, 293, 1187, 34607, 11059
Offset: 2

Views

Author

Klaus Brockhaus, Mar 02 2001

Keywords

Comments

Solutions mod p are represented by integers from 0 to p-1. The following equivalences hold for n > 1: There is a prime p such that n is a solution mod p of x^3 = 2 iff n^3-2 has a prime factor > n; n is a solution mod p of x^3 = 2 iff p is a prime factor of n^3-2 and p > n.
n^3-2 has at most two prime factors > n, consequently these factors are the only primes p such that n is a solution mod p of x^3 = 2. For n such that n^3-2 has no prime factor > n (the zeros in the sequence; they occur beyond the last entry shown in the database) see A060591. For n such that n^3-2 has two prime factors > n, cf. A060914.

Examples

			a(2) = 3, since 2 is a solution mod 3 of x^3 = 2 and 2 is not a solution mod p of x^3 = 2 for prime p = 2. Although 2^3 = 2 mod 2, prime 2 is excluded because 0 < 2 and 2 = 0 mod 2. a(5) = 41, since 5 is a solution mod 41 of x^3 = 2 and 5 is not a solution mod p of x^3 = 2 for primes p < 41. Although 5^3 = 2 mod 3, prime 3 is excluded because 3 < 5 and 5 = 2 mod 3.
		

Crossrefs

Formula

If n^3-2 has prime factors > n, then a(n) = least of these prime factors, else a(n) = 0.