cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059979 Number of 7-dimensional cage assemblies.

Original entry on oeis.org

1, 2187, 279936, 10000000, 170859375, 1801088541, 13492928512, 78364164096, 373669453125, 1522435234375, 5455160701056, 17565568854912, 51676101935731, 140710042265625, 358318080000000, 860542568759296, 1962637152460137, 4275360817613091, 8938717390000000
Offset: 1

Views

Author

Robert G. Wilson v, Mar 06 2001

Keywords

References

  • Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.

Crossrefs

Programs

  • Mathematica
    m = 7; Table[ ( (n^m)(n + 1)^m )/(2^m), {n, 1, 20} ]
    (Times@@@Partition[Range[20]^7,2,1])/2^7 (* Harvey P. Dale, Aug 20 2017 *)

Formula

G.f.: -x*(x^12 +2172*x^11 +247236*x^10+ 6030140*x^9 +49258935*x^8 +163809288*x^7 +242384856*x^6 +163809288*x^5 +49258935*x^4 +6030140*x^3 +247236*x^2 +2172*x +1)/(x-1)^15. - Colin Barker, Jul 09 2012
From Benedict W. J. Irwin, Mar 14 2016: (Start)
G.f.: z*7F6([3,3,3,3,3,3,3], [1,1,1,1,1,1], z).
a(n) = n^7*(1+n)^7/128.
(End)
a(n) = binomial(n+1, 2)^7. - Alejandro Rodriguez, Oct 20 2020
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 219648 - 19712*Pi^2 - 3584*Pi^4/15 - 256*Pi^6/135.
Sum_{n>=1} (-1)^(n+1)/a(n) = 236544*log(2) + 40320*zeta(3) + 6720*zeta(5) + 252*zeta(7) - 219648. (End)