A060081 Exponential Riordan array (sech(x), tanh(x)).
1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 5, 0, -14, 0, 1, 0, 61, 0, -30, 0, 1, -61, 0, 331, 0, -55, 0, 1, 0, -1385, 0, 1211, 0, -91, 0, 1, 1385, 0, -12284, 0, 3486, 0, -140, 0, 1, 0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1, -50521, 0, 663061
Offset: 0
Examples
p(3,x) = -5*x + x^3. Exponential convolution together with A111593 for row polynomials q(n,x), case n=2: -1+(x+y)^2 = p(2,x+y) = 1*p(0,x)*q(2,y) + 2*p(1,x)*q(1,y) + 1*p(2,x)*q(0,y) = 1*1*y^2 + 2*x*y + 1*(-1+x^2)*1. Triangle begins: 1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 5, 0, -14, 0, 1, 0, 61, 0, -30, 0, 1, -61, 0, 331, 0, -55, 0, 1, 0, -1385, 0, 1211, 0, -91, 0, 1, 1385, 0, -12284, 0, 3486, 0, -140, 0, 1, 0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1, -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1, ... As a right-aligned triangle: 1; 0, 1; -1, 0, 1; 0, -5, 0, 1; 5, 0, -14, 0, 1; 0, 61, 0, -30, 0, 1; -61, 0, 331, 0, -55, 0, 1; 0, -1385, 0, 1211, 0, -91, 0, 1; 1385, 0, -12284, 0, 3486, 0, -140, 0, 1; 0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1; -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1; ... Production matrix begins 0, 1; -1, 0, 1; 0, -4, 0, 1; 0, 0, -9, 0, 1; 0, 0, 0, -16, 0, 1; 0, 0, 0, 0, -25, 0, 1; 0, 0, 0, 0, 0, -36, 0, 1; 0, 0, 0, 0, 0, 0, -49, 0, 1; 0, 0, 0, 0, 0, 0, 0, -64, 0, 1; - _Paul Barry_, Jan 10 2011
References
- W. Lang, Two normal ordering problems and certain Sheffer polynomials, in Difference Equations, Special Functions and Orthogonal Polynomials, edts. S. Elaydi et al., World Scientific, 2007, pages 354-368. [From Wolfdieter Lang, Feb 06 2009]
Links
- Paul Barry, Exponential Riordan arrays and permutation enumeration,Journal of Integer Sequences, Vol. 13 (2010)
- Wolfdieter Lang, Thermo field dynamics, exercise 29. WS 2008/2009 (in German)
- Th. Spernat, Diplomarbeit 2004 (in German) (with permission)
Programs
-
Maple
riordan := (d,h,n,k) -> coeftayl(d*h^k,x=0,n)*n!/k!: A060081 := (n,k) -> riordan(sech(x),tanh(x),n,k): seq(print(seq(A060081(n,k),k=0..n)),n=0..5); # Peter Luschny, Apr 15 2015
-
Mathematica
max = 12; t = Transpose[ Table[ PadRight[ CoefficientList[ Series[ Tanh[x]^m/m!/Cosh[x], {x, 0, max}], x], max + 1, 0]*Table[k!, {k, 0, max}], {m, 0, max}]]; Flatten[ Table[t[[n, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Sep 29 2011 *)
-
Sage
def A060081_triangle(dim): # computes unsigned T(n, k). M = matrix(ZZ,dim,dim) for n in (0..dim-1): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1]+(k+1)^2*M[n-1,k+1] return M A060081_triangle(9) # Peter Luschny, Sep 19 2012
Formula
E.g.f. for column m: (((tanh(x))^m)/m!)/cosh(x), m >= 0. Use trigonometric functions for unsigned case.
a(n, m) = a(n-1, m-1)-((m+1)^2)*a(n-1, m+1); a(0, 0)=1; a(n, -1) := 0, a(n, m)=0 if n < m. Use sum of the two recursion terms for unsigned case.
a(n, k) = (1/(k+1)!)*Sum_{q=0..n} C(n,q)*((-1)^(n-q)+1)*((-1)^(q-k)+1)*Sum_{j=0..q-k} C(j+k,k)*(j+k+1)!*2^(q-j-k-2)*(-1)^j*Stirling2(q+1,j+k+1). - Vladimir Kruchinin, Feb 12 2019
Extensions
New name (using a comment from Paul Barry) from Peter Luschny, Apr 15 2015
Comments