A060098 Triangle of partial sums of column sequences of triangle A060086, read by rows.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 9, 16, 13, 5, 1, 1, 12, 30, 32, 19, 6, 1, 1, 16, 50, 71, 55, 26, 7, 1, 1, 20, 80, 140, 140, 86, 34, 8, 1, 1, 25, 120, 259, 316, 246, 126, 43, 9, 1, 1, 30, 175, 448, 660, 622, 399, 176, 53, 10, 1
Offset: 0
Examples
p(3,x) = 1 + 4*x + 3*x^2 + x^3. Triangle begins: 1; 1, 1; 1, 2, 1; 1, 4, 3, 1; 1, 6, 8, 4, 1; 1, 9, 16, 13, 5, 1; 1, 12, 30, 32, 19, 6, 1; 1, 16, 50, 71, 55, 26, 7, 1; ...
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4.
Crossrefs
Programs
-
Maple
A060098 := proc(n,k) add( binomial(n-2*i,n-2*i-k)*binomial(k+i-1,i), i=0..floor(n/2)) ; end proc: seq(seq(A060098(n,k), k=0..n), n=0..12); # R. J. Mathar, Mar 29 2011 # Recurrence after Philippe Deléham: T := proc(n, k) option remember; if k < 0 or k > n then 0 elif k = 0 or n = k then 1 else T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-3, k) fi end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 07 2023
-
Mathematica
t[n_, k_] := Sum[ Binomial[n-2*j, n-2*j-k]*Binomial[k+j-1, j], {j, 0, n/2}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
Formula
G.f. for column m >= 0: ((x/((1-x^2)*(1-x)))^m)/(1-x) = x^m/((1+x)^m*(1-x)^(2*m+1)).
Number triangle T(n,k) = Sum_{i=0..floor(n/2)} C(n-2*i,n-2*i-k)*C(k+i-1,i). - Paul Barry, Mar 28 2011
From Philippe Deléham, Apr 20 2023: (Start)
T(n, k) = 0 if k < 0 or if k > n; T(n, k) = 1 if k = 0 or k = n; otherwise:
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-3, k).
Comments