A060101 Sixth column (m=5) of triangle A060098.
1, 6, 26, 86, 246, 622, 1442, 3102, 6292, 12122, 22374, 39754, 68354, 114114, 185614, 294866, 458601, 699556, 1048476, 1546116, 2246244, 3218644, 4553484, 6365684, 8801104, 12042732, 16319252, 21913612, 29174652, 38528732, 50495236, 65702076, 84906041
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 20.
- Index entries for linear recurrences with constant coefficients, signature (6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1).
Programs
-
Mathematica
Accumulate[CoefficientList[Series[1/((1-x)(1-x^2))^5,{x,0,35}],x]] (* or *) LinearRecurrence[ {6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1},{1,6,26,86,246,622,1442,3102,6292,12122,22374,39754,68354,114114,185614,294866},30] (* Harvey P. Dale, Mar 06 2016 *)
-
PARI
Vec(1/ ((1-x)^11*(1+x)^5) + O(x^40)) \\ Colin Barker, Jan 17 2017
Formula
a(n)= sum(A060098(n+5, 5)).
G.f.: 1/((1-x^2)^5*(1-x)^6) = 1/((1-x)^11*(1+x)^5).
a(n) = (14175*(30827+1941*(-1)^n) + 1440*(676427+11445*(-1)^n)*n + 126*(6861329+27375*(-1)^n)*n^2 + 1600*(258451+189*(-1)^n)*n^3 + 10*(12016607+945*(-1)^n)*n^4 + 22444800*n^5 + 2754192*n^6 + 220800*n^7 + 11130*n^8 + 320*n^9 + 4*n^10)/ 464486400. - Colin Barker, Jan 17 2017
Comments