A060102 Bisection of triangle A060098: even-indexed members of column sequences of A060098 (not counting leading zeros).
1, 1, 1, 1, 4, 1, 1, 9, 8, 1, 1, 16, 30, 13, 1, 1, 25, 80, 71, 19, 1, 1, 36, 175, 259, 140, 26, 1, 1, 49, 336, 742, 660, 246, 34, 1, 1, 64, 588, 1806, 2370, 1442, 399, 43, 1, 1, 81, 960, 3906, 7062, 6292, 2828, 610, 53
Offset: 0
Examples
{1}; {1,1}; {1,4,1}; {1,9,8,1}; ... Pe(3,x) = 1 + 3*x.
Formula
a(n, m) = A060098(2*n-m, m).
a(n, m) = Sum_{j=0..floor((m+1)/2)} binomial((n-m)-j+2*m, 2*m)*binomial(m+1, 2*j), n >= m >= 0, otherwise zero.
G.f. for column m: (x^m)*Pe(m+1, x)/(1-x)^(2*m+1), with Pe(n, x) = Sum_{j=0..floor(n/2)} binomial(n, 2*j)*x^j (even members of row n of Pascal triangle A007318).
Comments