A060108 Sequence of sums based on primes = 7 mod 8.
2, 22, 40, 92, 210, 260, 442, 672, 950, 1162, 1520, 1650, 2072, 2380, 2882, 3060, 4030, 5370, 5612, 6112, 7740, 8030, 8932, 9560, 9882, 10542, 14950, 15352, 16590, 17442, 21540, 22022, 23002, 23500, 28222, 29330, 31032, 32782, 34580, 35190
Offset: 1
Examples
For n=2, p=A007522(2)=23, so a(2)=0+0+0+1+1+2+2+3+4+4+5=22.
Links
- C. Popescu, Problem 10852, American Mathematical Monthly, Vol. 108 (2001), p. 171.
- C. Popescu, Roy Barbara and Omran Kouba, A Sum Related to Quadratic Residues: 10852, American Mathematical Monthly, Vol. 109 (2002), p. 208.
Crossrefs
Cf. A007522.
Programs
-
PARI
lista(nn) = {forprime(p=2, nn, if ((p % 8) == 7, print1((p^2-1)/24, ", ")););} \\ Michel Marcus, Dec 12 2017
Formula
a(n) = Sum_{k=1..(p-1)/2} floor(k^2/p+1/2) where p is n-th prime congruent to 7 mod 8 (i.e. A007522(n)).
a(n) = (A007522(n)^2 - 1)/24. See 2nd link. - Michel Marcus, Dec 12 2017