A060118 A list of all finite permutations in "PermUnrank3L" ordering. (Inverses of the permutations of A060117.)
1, 2, 1, 1, 3, 2, 2, 3, 1, 3, 2, 1, 3, 1, 2, 1, 2, 4, 3, 2, 1, 4, 3, 1, 3, 4, 2, 2, 3, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 1, 4, 3, 2, 2, 4, 3, 1, 1, 4, 2, 3, 2, 4, 1, 3, 3, 4, 1, 2, 3, 4, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 4, 3, 2, 1, 4, 3, 1, 2, 4, 2, 1, 3, 4, 1, 2, 3, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 2, 3, 1
Offset: 0
Examples
In this table each row consists of A001563[n] permutations of (n+1) terms; Append to each an infinite number of fixed terms and we get a list of rearrangements of natural numbers, but with only a finite number of terms permuted: 1/2,3,4,5,6,7,8,9,... 2,1/3,4,5,6,7,8,9,... 1,3,2/4,5,6,7,8,9,... 2,3,1/4,5,6,7,8,9,... 3,2,1/4,5,6,7,8,9,... 3,1,2/4,5,6,7,8,9,... 1,2,4,3/5,6,7,8,9,... 2,1,4,3/5,6,7,8,9,...
Crossrefs
Programs
-
Maple
with(group); permul := (a,b) -> mulperms(b,a); PermUnrank3L := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Laux(n+1,r,[]),'permlist',1+(((r+2) mod (r+1))*n)); end; PermUnrank3Laux := proc(n,r,p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Laux(n-1, r-(s*((n-1)!)), permul([[n,n-s]],p))); fi; end;
Formula
[seq(op(PermUnrank3L(j)), j=0..)]; (Maple code given below)
Comments