cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060121 First solution mod p of x^3 = 2 for primes p such that only one solution exists.

Original entry on oeis.org

0, 2, 3, 7, 8, 16, 26, 5, 21, 18, 38, 49, 50, 16, 26, 6, 81, 54, 98, 70, 157, 161, 58, 147, 21, 86, 92, 197, 50, 249, 137, 184, 119, 45, 45, 261, 198, 61, 176, 143, 51, 103, 221, 72, 11, 219, 35, 86, 385, 384, 141, 143, 225, 92, 245, 533, 557, 473, 170, 375, 516
Offset: 1

Views

Author

Klaus Brockhaus, Mar 02 2001

Keywords

Comments

Solutions mod p are represented by integers from 0 to p-1. For i > 1, i is a solution mod p of x^3 = 2 iff p is a prime factor of i^3-2 and p > i (cf. comment to A059940). i^3-2 has at most two prime factors > i. Hence i is a solution mod p of x^3 = 2 for at most two different p and therefore no integer occurs more than twice in this sequence. There are integers which do occur twice, e.g. 16, 21, 26 (cf. A060914). Moreover, no integer occurs more than twice in A060121, A060122, A060123 and A060124 taken together.

Examples

			a(9) = 21, since 47 is the ninth term of A045309 and 21 is the only solution mod 47 of x^3 = 2.
		

Crossrefs

Programs

  • Maple
    Res:=0,2: count:= 2: p:= 3:
    while count < 100 do
    p:= nextprime(p);
       if p mod 3 = 2 then
        count:= count+1;
        Res:= Res, numtheory:-mroot(2,3,p);
    fi
    od:
    Res; # Robert Israel, Sep 12 2018
  • Mathematica
    terms = 100;
    A045309 = Select[Prime[Range[2 terms]], Mod[#, 3] != 1&];
    a[n_] := PowerMod[2, 1/3, A045309[[n]]];
    Array[a, terms] (* Jean-François Alcover, Feb 27 2019 *)

Formula

a(n) = first (only) solution mod p of x^3 = 2, where p is the n-th prime such that x^3 = 2 has only one solution mod p, i.e. p is the n-th term of A045309.