cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060157 Number of permutations of [n] with 3 sequences.

Original entry on oeis.org

0, 10, 58, 236, 836, 2766, 8814, 27472, 84472, 257522, 780770, 2358708, 7108908, 21392278, 64307926, 193185944, 580082144, 1741295034, 5225982282, 15682141180, 47054812180, 141181213790, 423577195838, 1270798696416, 3812530307016, 11437859356546, 34314114940594
Offset: 3

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001

Keywords

Examples

			a(4)=10 because each of the 5 (=A000111(4)) up-down permutations and 5 down-up permutations has 3 sequences. For example, the 3 sequences of 2413 are 24, 41, and 13. - _Emeric Deutsch_, Jul 11 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.

Crossrefs

Cf. A000111. - Emeric Deutsch, Jul 11 2009

Programs

  • Maple
    n3 := n->11/2-n-2^(n+1)+1/2*3^n; seq(n3(i),i=3..30);
  • Mathematica
    Table[11/2-n-2^(n+1)+3^n/2,{n,3,30}]
  • PARI
    a(n) = { (3^n + 11)/2 - 2^(n + 1) - n } \\ Harry J. Smith, Jul 02 2009

Formula

a(n) = 11/2 - n - 2^(n+1) + (1/2)*3^n.
G.f.: 2*x^4*(5-6*x)/((1-x)^2*(1-2*x)*(1-3*x)). - Colin Barker, Feb 17 2012