A060167 Number of orbits of length n under the map whose periodic points are counted by A001642.
1, 1, 1, 2, 4, 5, 9, 13, 23, 36, 63, 101, 175, 290, 497, 840, 1445, 2460, 4247, 7293, 12619, 21805, 37856, 65695, 114401, 199280, 347944, 607959, 1064130, 1864083, 3269948, 5740840, 10090148, 17748870, 31250297, 55063603, 97102485, 171355485, 302605780, 534729160, 945513850
Offset: 1
Examples
u(7) = 9 since a map whose periodic points are counted by A001642 would have 1 fixed point and 64 points of period 7, hence 9 orbits of length 7.
Links
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
Programs
-
PARI
a001642(n) = if(n<0, 0, polcoeff(x*(1+2*x+4*x^3+5*x^4)/(1-x-x^2-x^4-x^5)+x*O(x^n), n)); a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001642(n/d)); \\ Michel Marcus, Sep 11 2017
Formula
a(n) = (1/n)* Sum_{ d divides n } mu(d)*A001642(n/d).
Extensions
More terms from Michel Marcus, Sep 11 2017
Comments