A060168 Number of orbits of length n under the map whose periodic points are counted by A001643.
1, 1, 1, 2, 4, 6, 10, 15, 26, 42, 74, 121, 212, 357, 620, 1064, 1856, 3209, 5618, 9794, 17192, 30153, 53114, 93554, 165308, 292250, 517802, 918207, 1630932, 2899434, 5161442, 9196168, 16402764, 29281168, 52319364, 93555601, 167427844, 299841117, 537357892, 963641588, 1729192432
Offset: 1
Examples
u(7) = 10 since a map whose periodic points are counted by A001643 would have 1 fixed point and 71 points of period 7, hence 10 orbits of length 7.
Links
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
Programs
-
PARI
a001643(n) = if(n<0, 0, polcoeff(x*(1+2*x+4*x^3+5*x^4+6*x^5)/(1-x-x^2-x^4-x^5-x^6)+x*O(x^n), n)) a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001643(n/d)); \\ Michel Marcus, Sep 11 2017
Formula
a(n) = (1/n)* Sum_{ d divides n } mu(d)*A001643(n/d).
Extensions
More terms from Michel Marcus, Sep 11 2017
Comments