A060172 Number of orbits of length n under a map whose periodic points are counted by A027306.
1, 1, 1, 2, 3, 6, 9, 19, 28, 62, 93, 205, 315, 703, 1091, 2440, 3855, 8616, 13797, 30801, 49929, 111311, 182361, 405751, 671088, 1490409, 2485504, 5509504, 9256395, 20480421, 34636833, 76499520, 130150493, 286960946, 490853403, 1080476338, 1857283155, 4081876927, 7048151355
Offset: 1
Examples
u(7) = 9 since the map whose periodic points are counted by A027306 has 1 fixed point and 64 points of period 7, hence 9 orbits of length 7.
Links
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
Crossrefs
Programs
-
PARI
a027306(n) = (2^n + if(n%2, 0, binomial(n, n/2)))/2; a(n) = (1/n)*sumdiv(n, d, moebius(d)*a027306(n/d)); \\ Michel Marcus, Sep 11 2017
Formula
a(n) = (1/n)* Sum_{ d divides n } mu(d)*A027306(n/d).
Extensions
More terms from Michel Marcus, Sep 11 2017
Comments