A060173 Number of orbits of length n under a map whose periodic points are counted by A056045.
1, 1, 1, 2, 1, 6, 1, 12, 10, 30, 1, 139, 1, 252, 231, 920, 1, 3780, 1, 10250, 5601, 32076, 1, 149390, 2126, 400036, 173692, 1475642, 1, 6196651, 1, 19113136, 5864915, 68635494, 201405, 289525026, 1, 930138540, 208267554, 3469290971, 1, 14075005210, 1, 47994721225, 7683440470
Offset: 1
Examples
a(7) = 1 since the map whose periodic points are counted by A056045 has 1 fixed point and 8 points of period 7, hence 1 orbits of length 7.
Links
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
Crossrefs
Programs
-
PARI
a056045(n) = sumdiv(n, d, binomial(n, d)); a(n) = (1/n)*sumdiv(n, d, moebius(d)*a056045(n/d)); \\ Michel Marcus, Sep 11 2017
Formula
a(n) = (1/n)* Sum_{ d divides n } mu(d)*A056045(n/d).
Extensions
More terms from Michel Marcus, Sep 11 2017
Comments