A060206
Number of rotationally symmetric closed meanders of length 4n+2.
Original entry on oeis.org
1, 2, 10, 66, 504, 4210, 37378, 346846, 3328188, 32786630, 329903058, 3377919260, 35095839848, 369192702554, 3925446804750, 42126805350798, 455792943581400, 4967158911871358, 54480174340453578, 600994488311709056, 6664356253639465480
Offset: 0
A060066
Number of tame meanders with 2n crossings.
Original entry on oeis.org
1, 3, 15, 93, 657, 5063, 41535, 357205, 3187599, 29303687, 276062807, 2654603987
Offset: 1
- R. Bacher, Meander algebras, Institut Fourier, UMR 5582, Laboratoire de Mathématiques, 1999.
More terms from Larry Reeves (larryr(AT)acm.org), Apr 26 2001
A060089
Dimensions of graded algebra associated with meanders (subalgebra version).
Original entry on oeis.org
1, 1, 3, 7, 23, 63, 213, 627, 2149, 6597, 22787, 71883, 249523, 802291, 2794365, 9111917, 31814061, 104862813, 366796437, 1219313185, 4271041447, 14295561451, 50131159253, 168742700865, 592279599483, 2003050663889, 7035894016347, 23890177457535, 83968962295531
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..40 (terms 0..28 from B. Bobier and J. Sawada)
- Roland Bacher, Meander algebras, Institut Fourier, UMR 5582, Laboratoire de Mathématiques, 1999.
- B. Bobier and J. Sawada, A fast algorithm to generate open meandric systems and meanders, Transactions on Algorithms, Vol. 6 No. 2 (2010) article #42, 12 pages.
More terms from Larry Reeves (larryr(AT)acm.org), Apr 26 2001
Further terms from the Bobier-Sawada paper, Jul 28 2007
A060148
Number of closed forest meander systems with 2n crossings.
Original entry on oeis.org
1, 1, 3, 15, 97, 733, 6147, 55541, 530773, 5298723, 54780831, 582817337, 6350647873, 70614662303, 798935833885, 9176290300419, 106793746090045, 1257408517909283, 14958873368871405, 179614516459970349, 2174717049372338913, 26530091641879493297, 325875790867387681293
Offset: 0
An example of a 2 component forest meander system with 8 crossings that is not tame:
________
/ ______ \
/ / \ \
/ / /\ /\ \ \
\ \ \/ / / \/
\ \__/ /
\____/
A060174
Dimensions of graded algebra associated with forest meanders (subalgebra version).
Original entry on oeis.org
1, 4, 32, 320, 3536, 41344, 501264, 6232736, 78948912, 1014329856, 13178920016, 172789849952, 2282474558160, 30340247738176, 405461900524400, 5443463231234592, 73372619284217776, 992459740253399360, 13465895431077568080, 183211658096891394848, 2498857102607629076880
Offset: 0
- Roland Bacher, Meander algebras, Institut Fourier, UMR 5582, Laboratoire de Mathématiques, 1999.
A060111
Dimensions of graded algebra associated with meanders.
Original entry on oeis.org
1, 4, 15, 56, 207, 764, 2805, 10288, 37609, 137380, 500655, 1823440, 6629423, 24090332, 87418221, 317085352, 1148825185, 4160744164, 15054719697, 54454345624, 196805925995, 711077858188, 2567375653681, 9267176552040, 33430012251123, 120565130387572, 434578910451203
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..40 (terms 0..27 from B. Bobier and J. Sawada)
- Roland Bacher, Meander algebras, Institut Fourier, UMR 5582, Laboratoire de Mathématiques, 1999.
- B. Bobier and J. Sawada, A fast algorithm to generate open meandric systems and meanders, Transactions on Algorithms, Vol. 6 No. 2 (2010) article #42, 12 pages. [The final term for a(28) is incorrect].
More terms from Larry Reeves (larryr(AT)acm.org), Apr 26 2001
A060149
Number of homogeneous generators of degree n for graded algebra associated with meanders.
Original entry on oeis.org
1, 3, 2, 13, 16, 106, 166, 1073, 1934, 12142, 24076, 147090, 312906, 1865772, 4191822, 24463905, 57433950, 328887346, 800740450, 4508608610, 11319707546, 62781858592, 161841539812, 885513974674, 2335765140994, 12624162072740, 33979681977530, 181611275997040
Offset: 1
-
seq(n) = Vec(1 - 1/sum(k=0, n, binomial(k, k\2)^2*x^k, O(x*x^n))) \\ Andrew Howroyd, Feb 07 2025
A380368
Triangle read by rows: T(n,k) is the number of closed forest meander systems with 2n crossings and k components.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 8, 6, 1, 0, 42, 42, 12, 1, 0, 262, 320, 130, 20, 1, 0, 1828, 2618, 1360, 310, 30, 1, 0, 13820, 22582, 14196, 4270, 630, 42, 1, 0, 110954, 203006, 149024, 55524, 11060, 1148, 56, 1, 0, 933458, 1886004, 1577712, 698952, 175560, 25032, 1932, 72, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 8, 6, 1;
0, 42, 42, 12, 1;
0, 262, 320, 130, 20, 1;
0, 1828, 2618, 1360, 310, 30, 1;
0, 13820, 22582, 14196, 4270, 630, 42, 1;
...
The T(3,2) = 6 forest meander systems are the following and their reflections.
______
/ ____ \ ___
/ / \ \ / \
.. / /. /\ .\ \ .. and .. / / \ \ . /\ ..
\/ \/ \/ \/ \/ \/
(2) (4)
.
There are also 6 systems that are not forest meander systems:
____ ______
/ __ \ / \
.. / / \ \ .. and .. / /\ /\ \ ..
\ \/\/ / \ \/ / \/
\____/ \__/
(2) (4)
Showing 1-8 of 8 results.
Comments