A060259 Denoting 4 consecutive primes by p, q, r and s, these are the values of q such that q and r have 10 as a primitive root, but p and s do not.
59, 109, 179, 229, 571, 701, 937, 1019, 1171, 1429, 1619, 1777, 1811, 1847, 2063, 2269, 2297, 2339, 2383, 2447, 2731, 2819, 2927, 3257, 3299, 3331, 3461, 3571, 3593, 3617, 3701, 3833, 3967, 4139, 4259, 4421, 4567, 4691, 4937, 5087, 5153, 5179, 5417
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
test[p_] := MultiplicativeOrder[10, p]===p-1; Prime/@Select[Range[2, 800], test[Prime[ # ]]&&test[Prime[ #+1]]&&!test[Prime[ #-1]]&&!test[Prime[ #+2]]&] Prime[#+1]&/@SequencePosition[Table[If[MultiplicativeOrder[10,p]===p-1,1,0],{p,Prime[Range[ 800]]}],{0,1,1,0}][[;;,1]] (* Harvey P. Dale, Nov 29 2023 *)
Extensions
Edited by Dean Hickerson, Jun 17 2002
Offset corrected by Amiram Eldar, Oct 03 2021
Comments