cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060285 Number of partitions of n objects of 2 colors with parts size >1.

Original entry on oeis.org

1, 0, 3, 4, 11, 18, 42, 70, 144, 248, 466, 802, 1442, 2444, 4247, 7116, 12030, 19878, 32938, 53670, 87429, 140680, 225815, 359100, 569157, 895224, 1402941, 2184662, 3388915, 5228458, 8035921, 12291710, 18732318, 28425342, 42981877, 64740330
Offset: 0

Views

Author

Vladeta Jovovic, Mar 23 2001

Keywords

Crossrefs

Cf. (row sums of) A060244, A054225, A005380.

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k+1),{k,2,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 04 2015 *)

Formula

Euler transform of sequence [0, 3, 4, 5, 6, ...].
G.f.: Product_{k=2..infinity} 1/(1-x^k)^(k+1).
From Vaclav Kotesovec, Mar 09 2015: (Start)
For n>=2, a(n) = A005380(n-2) - 2*A005380(n-1) + A005380(n).
a(n) ~ 2^(1/36) * Zeta(3)^(37/36) * exp(1/12 - Pi^4/(432*Zeta(3)) + Pi^2 * n^(1/3) / (3*2^(4/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 3^(1/2) * Pi * n^(55/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... .
a(n) ~ (2*Zeta(3))^(2/3) * A005380(n) / n^(2/3).
(End)

Extensions

Edited by Christian G. Bower, Jan 08 2004