A060292 At least two unordered triples of positive numbers have product n and equal sums.
36, 40, 72, 90, 96, 126, 144, 168, 176, 200, 225, 234, 240, 252, 270, 280, 288, 297, 320, 360, 396, 408, 420, 432, 450, 480, 504, 520, 540, 546, 550, 560, 576, 588, 600, 630, 648, 672, 675, 690, 714, 720, 735, 736, 768, 780, 784, 800, 816, 840, 850, 855
Offset: 1
Examples
36=6*6*1=9*2*2. 6+6+1=9+2+2. so 36 is in the sequence.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 160 terms from Carmine Suriano)
Crossrefs
Cf. A060275.
Programs
-
Maple
N:= 1000: # to get all entries <= N for i from 1 to N do R[i]:= {} od: A:= {}: for a from 1 to floor(N^(1/3)) do for b from a to floor((N/a)^(1/2)) do for c from b to floor(N/(a*b)) do p:= a*b*c; s:= a+b+c; if member(s,R[p]) then A:= A union {p} else R[p]:= R[p] union {s} fi; od od od: A; # if using Maple 11 or earlier, uncomment the next line # sort(convert(A,list)); # Robert Israel, Feb 09 2015 # second Maple program: b:= proc(n, k, t) option remember; expand(`if`(t=0, `if`(k
k, 0, b(n/d, d, t-1)*x^d), d=numtheory[divisors](n)))) end: a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 0, a(n-1)) while max(coeffs(b(k$2, 2)))<2 do od; k end: seq(a(n), n=1..50); # Alois P. Heinz, May 16 2020 -
Mathematica
b[n_, k_, t_] := b[n, k, t] = Expand[If[t == 0, If[k < n, 0, x^n], Sum[If[d > k, 0, b[n/d, d, t - 1] x^d], {d, Divisors[n]}]]]; a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n - 1]], Max[ CoefficientList[b[k, k, 2], x]] < 2, k++]; k]; Array[a, 52] (* Jean-François Alcover, May 30 2020, after Alois P. Heinz *)
Extensions
Name changed by Robert Israel, Feb 09 2015