A060369 a(n) is the maximum number of occurrences of a degree in the sequence of the degrees of the irreducible representations of the symmetric group S_n.
1, 2, 2, 2, 2, 4, 4, 2, 3, 2, 4, 4, 6, 6, 6, 4, 8, 6, 10, 6, 8, 8, 12, 8, 12, 12, 10, 12, 22, 14, 12, 12, 16, 18, 30, 14, 20, 26, 16, 20, 22, 20, 26, 25, 24, 24, 32, 16, 32, 30, 26, 24, 32, 32, 40, 32, 34, 32, 32, 34, 44, 30, 44, 36, 52, 34, 54, 38, 56, 50
Offset: 1
Keywords
Examples
a(6) = 4 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and the number 5 appears 4 times.
Programs
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := a[n] = If[n == 1, 1, MaximalBy[Tally[g[n, n, {}]], Last][[1, 2]]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
-
Sage
def A060369(n) : mult = {} for P in Partitions(n): dim = P.dimension() mult[dim] = mult.get(dim, 0) + 1 return max(mult.values()) # Eric M. Schmidt, May 01 2013
Extensions
More terms from Eric M. Schmidt, May 01 2013