A060382 In base n, a(n) is the smallest number m that leads to a palindrome-free sequence, using the following process: start with m; reverse the digits and add it to m, repeat. Stop if you reach a palindrome.
22, 103, 290, 708, 1079, 2656, 1021, 593, 196, 1011, 237, 2701, 361, 447, 413, 3297, 519, 341, 379, 711, 461, 505, 551, 1022, 649, 701, 755, 811, 869, 929, 991, 1055, 1799, 1922, 1259, 1331, 1405, 1481, 1559, 1639, 1595, 1762, 1891, 1934, 2069, 2161
Offset: 2
Examples
a(2) = 22 since A062129(k) > -1 (equivalently, A062131(k) > -1) for k < 22.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 2..20000 (terms 2..3428 from Karl Hovekamp, with some corrections)
- K. S. Brown, Digit Reversal Sums Leading to Palindromes
- A.H.M. Smeets, Lists of first 20 Lychrel numbers for bases n <= 1000
- A.H.M. Smeets, Scatterplot of log_10(a(n)/n^2) versus n for 73 < n <= 20000
Crossrefs
Programs
-
Python
def rev(n,base): m = 0 while n > 0: n, m = n//base, m*base+n%base return m n, a, steps = 2, 3, 0 while n <= 20000: aa = a ra = rev(a,n) while aa != ra and steps < 1000: aa = aa+ra ra, steps = rev(aa,n), steps+1 if aa == ra: a, aa, steps = a+1, a+1, 0 if steps == 1000: print(n,a) n, a, steps = n+1, n+2, 0 # A.H.M. Smeets, May 27 2019
Extensions
More terms from Karl Hovekamp, Jan 03 2007
Comments