A060387 Numbers k such that x^4 + y^4 = k * z^4 is solvable in nonzero integers x,y,z.
2, 17, 32, 82, 97, 162, 257, 272, 337, 512, 626, 641, 706, 881, 1250, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 5906
Offset: 1
Links
- A. Bremner and P. Morton, A new characterization of the integer 5906, Manuscripta Math. 44 (1983) 187-229; Math. Rev. 84i:10016.
- Steven R. Finch, On a generalized Fermat-Wiles equation [broken link]
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [From the Wayback Machine]
- Eric Weisstein's World of Mathematics, Biquadratic Number
Programs
-
Mathematica
r[n_, z_] := Reduce[0 < x <= y && x^4 + y^4 == n*z^4, {x, y}, Integers]; zm[] = 1; zm[5906] = 17; ok[n] := (tf = False; Do[ If[ r[n, z] =!= False, tf = True; Break[]], {z, 1, zm[n]}]; tf); A060387 = Reap[ Do[ If[ ok[n], Print[n]; Sow[n]], {n, 1, 5906}]][[2, 1]](* Jean-François Alcover, Mar 09 2012 *)
Comments