A060443 Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), without repetition.
0, 1, 3, 7, 3, 5, 31, 3, 7, 127, 3, 5, 17, 7, 73, 3, 11, 31, 23, 89, 3, 5, 7, 13, 8191, 3, 43, 127, 7, 31, 151, 3, 5, 17, 257, 131071, 3, 7, 19, 73, 524287, 3, 5, 11, 31, 41, 7, 127, 337, 3, 23, 89, 683, 47, 178481, 3, 5, 7, 13, 17, 241
Offset: 0
Examples
From _Wolfdieter Lang_, Sep 23 2017: (Start) The irregular triangle T(n,k) begins for n >= 2: n\k 1 2 3 4 5 2: 3 3: 7 4: 3 5 5: 31 6: 3 7 7: 127 8: 3 5 17 9: 7 73 10: 3 11 31 11: 23 89 12: 3 5 7 13 13: 8191 14: 3 43 127 15: 7 31 151 16: 3 5 17 257 17: 131071 18: 3 7 19 73 19: 524287 20: 3 5 11 31 41 ... (End)
References
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
Links
- T. D. Noe, Rows n=0..500 of triangle, flattened (derived from Brillhart et al.)
- Joerg Arndt, Rows n=1..1200 of triangle when repetitions are included (derived from Brillhart et al.)
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- Jeroen Demeyer, Machine-readable Cunningham Tables [Broken link]
- S. S. Wagstaff, Jr., The Cunningham Project
- Chai Wah Wu, Tables from the Cunningham Project in machine-readable JSON format.
Programs
-
Mathematica
Array[FactorInteger[2^# - 1][[All, 1]] &, 25, 0] (* Paolo Xausa, Apr 18 2024 *)
Comments