cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059804 Consider the line segment in R^n from the origin to the point v=(2,3,5,7,11,...) with prime coordinates; let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times v.v.

Original entry on oeis.org

1, 3, 9, 39, 87, 215, 391, 711, 1326, 1975, 2925, 4256, 5696, 7537, 9774, 12488, 16322, 20477, 24966, 30007, 35336, 41577, 48466, 56387, 65796, 75997, 86606, 98055, 109936, 122705, 138834, 155995, 174764, 194085, 216286, 239087, 263736, 290305
Offset: 2

Views

Author

Keywords

Comments

v.v is given by A024450(n). For n >= 19, a(n) = A024450(n-1).
Officially these are just conjectures so far.

Crossrefs

Cf. A137609 (where the minimum distance occurs along the line segment).

A060452 Let v = (1,4,9,...,n^2), x = (0,1,2,4,6,...) [first n terms of A002620]; a(n) = v.v * x.x - (v.x)^2.

Original entry on oeis.org

0, 1, 6, 38, 107, 350, 728, 1752, 3090, 6215, 9878, 17654, 26117, 42924, 60256, 93024, 125460, 184509, 241110, 341110, 434511, 595562, 742808, 991640, 1215110, 1586403, 1914822, 2452646, 2922185, 3681560, 4337024, 5385600, 6281704, 7701561, 8904294, 10793862, 12381939, 14858038, 16924440, 20124440, 22778042, 26862143, 30229430, 35383062, 39609933, 46046276, 51299936, 59262560, 65733500, 75499125
Offset: 1

Views

Author

N. J. A. Sloane and Vinay Vaishampayan, Apr 09 2001

Keywords

Crossrefs

Cf. A002620, A000538, A059859. Agrees with A060453 for first 37 terms.

Programs

  • Maple
    fv := n->1/30*n*(1+n)*(2*n+1)*(3*n^2+3*n-1); # this is A000538
    f1 := n->1/160*(n-1)*(1+n)*(2*n^3+5*n^2+2*n-5);
    f2 := n->1/160*n*(n+2)*(2*n^3+n^2-2*n+4);
    f7 := n->if n mod 2 = 0 then f2(n) else f1(n) end if; # this is A059859
    f3 := n->1/20*n^5+1/8*n^4+1/24*n^3-11/120*n-1/8*n^2;
    f4 := n->1/20*n^5+1/8*n^4+1/24*n^3+1/30*n;
    f5:-n-> if `mod`(n,2) = 0 then f4(n) else f3(n) end if; # this is A060453
    A060452 := n->f7(n)*fv(n)-f5(n)^2;
  • Mathematica
    Table[Module[{nn=n,v,x},v=Range[nn]^2;x=Floor[v/4];v.v x.x-(v.x)^2],{n,50}] (* or *) LinearRecurrence[{1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{0,1,6,38,107,350,728,1752,3090,6215,9878,17654,26117},50] (* Harvey P. Dale, Aug 10 2021 *)

Formula

G.f. -x^2*(1+5*x+26*x^2+39*x^3+66*x^4+39*x^5+26*x^6+5*x^7+x^8) / ( (1+x)^6*(x-1)^7 ). - R. J. Mathar, Apr 04 2012
Showing 1-2 of 2 results.