A060468 Number of fair distributions (equal sum) of the integers {1,..,4n} between A and B = number of solutions to the equation {+-1 +-2 +- 3 ... +-4*n = 0}.
1, 2, 14, 124, 1314, 15272, 187692, 2399784, 31592878, 425363952, 5830034720, 81072032060, 1140994231458, 16221323177468, 232615054822964, 3360682669655028, 48870013251334676, 714733339229024336
Offset: 0
Examples
a(1)=2: give either the set {1,4} to A and {2,3} to B or give {2,3} to A and {1,4} to B.
Links
- Ray Chandler, Table of n, a(n) for n = 0..834 (terms < 10^1000)
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
Programs
-
Mathematica
a[n_] := Coefficient[Product[q^(-k) + q^k, {k, 1, 4*n}], q, 0]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Sep 26 2013 *)