cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A063865 Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = 0.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 8, 14, 0, 0, 70, 124, 0, 0, 722, 1314, 0, 0, 8220, 15272, 0, 0, 99820, 187692, 0, 0, 1265204, 2399784, 0, 0, 16547220, 31592878, 0, 0, 221653776, 425363952, 0, 0, 3025553180, 5830034720, 0, 0, 41931984034, 81072032060, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, suggested by J. H. Conway, Aug 27 2001

Keywords

Comments

Number of sum partitions of the half of the n-th-triangular number by distinct numbers in the range 1 to n. Example: a(7)=8 since triangular(7)=28 and 14 = 2+3+4+5 = 1+3+4+6 = 1+2+5+6 = 3+5+6 = 7+1+2+4 = 7+3+4 = 7+2+5 = 7+1+6. - Hieronymus Fischer, Oct 20 2010
The asymptotic formula below was stated as a conjecture by Andrica & Tomescu in 2002 and proved by B. D. Sullivan in 2013. See his paper and H.-K. Hwang's review MR 2003j:05005 of the JIS paper. - Jonathan Sondow, Nov 11 2013
a(n) is the number of subsets of {1..n} whose sum is equal to the sum of their complement. See example below. - Gus Wiseman, Jul 04 2019

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
For example, the a(0) = 1 through a(8) = 14 subsets (empty columns not shown) are:
  {}  {3}    {1,4}  {1,6,7}    {3,7,8}
      {1,2}  {2,3}  {2,5,7}    {4,6,8}
                    {3,4,7}    {5,6,7}
                    {3,5,6}    {1,2,7,8}
                    {1,2,4,7}  {1,3,6,8}
                    {1,2,5,6}  {1,4,5,8}
                    {1,3,4,6}  {1,4,6,7}
                    {2,3,4,5}  {2,3,5,8}
                               {2,3,6,7}
                               {2,4,5,7}
                               {3,4,5,6}
                               {1,2,3,4,8}
                               {1,2,3,5,7}
                               {1,2,4,5,6}
(End)
		

Crossrefs

"Decimations": A060468 = 2*A060005, A123117 = 2*A104456.
Analogous sequences for sums of squares and cubes are A158092, A158118, see also A019568. - Pietro Majer, Mar 15 2009

Programs

  • Maple
    M:=400; t1:=1; lprint(0,1); for n from 1 to M do t1:=expand(t1*(x^n+1/x^n)); lprint(n, coeff(t1,x,0)); od: # N. J. A. Sloane, Jul 07 2008
  • Mathematica
    f[n_, s_] := f[n, s]=Which[n==0, If[s==0, 1, 0], Abs[s]>(n*(n+1))/2, 0, True, f[ n-1, s-n]+f[n-1, s+n]]; a[n_] := f[n, 0]
    nmax = 50; d = {1}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n];
      , {n, nmax}];
    a1 (* Ray Chandler, Mar 13 2014 *)
  • PARI
    a(n)=my(x='x); polcoeff(prod(k=1,n,x^k+x^-k)+O(x),0) \\ Charles R Greathouse IV, May 18 2015
    
  • PARI
    a(n)=0^n+floor(prod(k=1,n,2^(n*k)+2^(-n*k)))%(2^n) \\ Tani Akinari, Mar 09 2016

Formula

Asymptotic formula: a(n) ~ sqrt(6/Pi)*n^(-3/2)*2^n for n = 0 or 3 (mod 4) as n approaches infinity.
a(n) = 0 unless n == 0 or 3 (mod 4).
a(n) = constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k). - N. J. A. Sloane, Jul 07 2008
If n = 0 or 3 (mod 4) then a(n) = coefficient of x^(n(n+1)/4) in Product_{k=1..n} (1+x^k). - D. Andrica and I. Tomescu.
a(n) = 2*A058377(n) for any n > 0. - Rémy Sigrist, Oct 11 2017

Extensions

More terms from Dean Hickerson, Aug 28 2001
Corrected and edited by Steven Finch, Feb 01 2009

A060005 Number of ways of partitioning the integers {1,2,..,4n} into two (unordered) sets such that the sums of parts are equal in both sets (parts in either set will add up to (4n)*(4n+1)/4). Number of solutions to {1 +- 2 +- 3 +- ... +- 4n=0}.

Original entry on oeis.org

1, 1, 7, 62, 657, 7636, 93846, 1199892, 15796439, 212681976, 2915017360, 40536016030, 570497115729, 8110661588734, 116307527411482, 1680341334827514, 24435006625667338, 357366669614512168, 5253165510907071170
Offset: 0

Views

Author

Roland Bacher, Mar 15 2001

Keywords

Examples

			a(1)=1 since there is only one way of partitioning {1,2,3,4} into two sets of equal sum, namely {1,4}, {2,3}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
        end:
    a:= n-> b(4*n, 4*n-1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 30 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{m = i*(i+1)/2}, If[n > m, 0, If[n == m, 1, b[Abs[n-i], i-1] + b[n+i, i-1]]]]; a[n_] := b[4*n, 4*n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 26 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(0)=1 and a(n) is half the coefficient of q^0 in product((q^(-k)+q^k), k=1..4*n) for n >= 1.
For n>=1, a(n) = (1/Pi)*16^n*J(4n) where J(n) = integral(t=0, Pi/2, cos(t)cos(2t)...cos(nt)dt). - Benoit Cloitre, Sep 24 2006

Extensions

More terms from Alois P. Heinz, Oct 30 2011

A063074 Number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box; number of ways to cut a 2n X 2n chessboard into two equal-area pieces along a non-descending line from lower left to upper right.

Original entry on oeis.org

1, 2, 8, 58, 526, 5448, 61108, 723354, 8908546, 113093022, 1470597342, 19499227828, 262754984020, 3589093760726, 49596793134484, 692260288169282, 9747120868919060, 138298900243896166, 1975688102624819336, 28396056820503468894, 410363630540693436398
Offset: 0

Views

Author

Wouter Meeussen, Aug 03 2001

Keywords

Comments

Also the number of subsets of {1,...,4*n} containing exactly 2*n elements with total sum n*(4*n+1) (see also A060468 for a related sequence). This is of course the same as the number of partitions of n*(4*n+1) having 2*n distinct parts of length at most 4*n. This number is the coefficient of t^0 q^0 in Product_{k=1..4*n} (t*q^k + 1/(t*q^k)). - Roland Bacher, May 02 2002
A bijection with a dissection as above of the 2n X 2n checkerboard is given by subtracting 1,2,3,...,2n of the smallest, second-smallest, etc. element in the subset. Example for n=2: {1,2,7,8} (yields the checkerboard partition {1-1,2-2,7-3,8-4}={0,0,4,4}), {1,3,6,8} (yields {1-1,3-2,6-3,8-4}={0,1,3,4}), {1,4,5,8} (yields {0,2,2,4}), {1,4,6,7} (yields {0,2,3,3}), {3,4,5,6} (yields {2,2,2,2}), {2,4,5,7} (yields {1,2,2,3}), {2,3,6,7} (yields {1,1,3,3}), {2,3,5,8} (yields {1,1,2,4}).
Appears to be the number of random walks of length 4n, moves +/-1, starting and ending at 0 and with signed area 0 under the path. It would be nice to have a lower bound of the form a(n) > c*2^{4n}/n^d. - David_Mumford(AT)brown.edu, Jun 25 2003

Examples

			For a 4 X 4 board (n=2) the 8 partitions are (4,4,0,0), (4,3,1,0), (4,2,1,1), (4,2,2,0), (3,3,2,0), (3,3,1,1), (3,2,2,1), (2,2,2,2).
		

Crossrefs

Bisection of row n=2 of A204459. - Alois P. Heinz, Jan 18 2012

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n*(4*n+1), 4*n, 2*n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 18 2012
  • Mathematica
    Table[ Length@Select[ IntegerPartitions[ 2n^2 ], Length[ # ] <= 2n && First[ # ] <= 2n& ], {n, 1, 5} ] or faster: Table[ T[ 2n^2, 2n, 2n ], {n, 0, 24} ] with T[ m, a, b ] as defined in A047993.
    (* second program: *)
    b[n_, i_, t_] := b[n, i, t] =  If[i < t || n < t (t + 1)/2 || n > t (2i - t + 1)/2, 0, If[n == 0, 1, b[n, i - 1, t] + If[n < i, 0, b[n - i, i - 1, t - 1]]]]; a[n_] := b[n (4n + 1), 4n, 2n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) = A029895(2n) = A067059(2n, 2n) = A107110(2n, 2n^2). a(n) seems to be close to (sqrt(75)/Pi)*16^n/(20n^2+6n+1). - Henry Bottomley, May 12 2005

Extensions

More terms from Alois P. Heinz, Jan 18 2012

A006718 Number of golygons of length 8n.

Original entry on oeis.org

1, 4, 112, 8432, 909288, 121106960, 18167084064, 2956370702688, 510696155882492, 92343039606440064, 17311893232788414400, 3342127071364266721200, 661066887819006986788620, 133456726466163517072371360
Offset: 0

Views

Author

Keywords

Comments

A007219 is the main entry for golygons.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 92.

Crossrefs

See A007219 for much more information about golygons.

Programs

  • Mathematica
    p1[n_] := Product[x^k + 1, {k, 1, n - 1, 2}] // Expand; p2[n_] := Product[x^k + 1, {k, 1, n/2}] // Expand; c[n_] := Coefficient[p1[n], x, n^2/8] * Coefficient[p2[n], x, n (n/2 + 1)/8]; a[n_] := c[8*n]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Jul 24 2013, after Eric W. Weisstein *)

Formula

a(n) = 4 * A007219(n) for n > 0. - Charles R Greathouse IV, Apr 29 2012
a(n) = A060468(n) * A292476(2*n) = A063865(4*n) * A292476(2*n). - Seiichi Manyama, Sep 18 2017

Extensions

a(0) = 1 prepended by Seiichi Manyama, Sep 18 2017

A123117 A063865(4n-3).

Original entry on oeis.org

2, 8, 70, 722, 8220, 99820, 1265204, 16547220, 221653776, 3025553180, 41931984034, 588491482334, 8346638665718, 119447839104366, 1722663727780132, 25011714460877474, 365301750223042066, 5363288299585278800
Offset: 1

Views

Author

N. J. A. Sloane, Jul 07 2008

Keywords

Crossrefs

Formula

a(n) = 2*A104456(n).
Showing 1-5 of 5 results.