cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A204459 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of k-element subsets that can be chosen from {1,2,...,k*n} having element sum k*(k*n+1)/2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 0, 3, 0, 1, 0, 1, 8, 8, 4, 1, 1, 0, 1, 0, 33, 0, 5, 0, 1, 0, 1, 58, 141, 86, 25, 6, 1, 1, 0, 1, 0, 676, 0, 177, 0, 7, 0, 1, 0, 1, 526, 3370, 3486, 1394, 318, 50, 8, 1, 1, 0, 1, 0, 17575, 0, 11963, 0, 519, 0, 9, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 15 2012

Keywords

Comments

A(n,k) is the number of partitions of k*(k*n+1)/2 into k distinct parts <=k*n.
A(n,k) = 0 if k>0 and (n = 0 or k*(k*n+1) mod 2 = 1).

Examples

			A(0,0) = 1: {}.
A(1,1) = 1: {1}.
A(5,1) = 1: {3}.
A(1,5) = 1: {1,2,3,4,5}.
A(2,2) = 2: {1,4}, {2,3}.
A(3,2) = 3: {1,6}, {2,5}, {3,4}.
A(2,3) = 0: no subset of {1,2,3,4,5,6} has element sum 3*(3*2+1)/2 = 21/2.
A(4,2) = 4: {1,8}, {2,7}, {3,6}, {4,5}.
A(3,3) = 8: {1,5,9}, {1,6,8}, {2,4,9}, {2,5,8}, {2,6,7}, {3,4,8}, {3,5,7}, {4,5,6}.
A(2,4) = 8: {1,2,7,8}, {1,3,6,8}, {1,4,5,8}, {1,4,6,7}, {2,3,5,8}, {2,3,6,7}, {2,4,5,7}, {3,4,5,6}.
Square array A(n,k) begins:
  1, 0, 0,  0,   0,    0,     0,      0, ...
  1, 1, 1,  1,   1,    1,     1,      1, ...
  1, 0, 2,  0,   8,    0,    58,      0, ...
  1, 1, 3,  8,  33,  141,   676,   3370, ...
  1, 0, 4,  0,  86,    0,  3486,      0, ...
  1, 1, 5, 25, 177, 1394, 11963, 108108, ...
  1, 0, 6,  0, 318,    0, 32134,      0, ...
  1, 1, 7, 50, 519, 5910, 73294, 957332, ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n
    				
  • Mathematica
    b[n_, i_, t_] /; it*((2*i-t+1)/2) = 0; b[0, , ] = 1; b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n, 0] = 1; a[0, ] = 0; a[n_, k_] := With[{s = k*(k*n+1)}, If[Mod[s, 2] == 1, 0, b[s/2, k*n, k]]]; Flatten[ Table[ a[n, d-n], {d, 0, 15}, {n, 0, d}]] (* Jean-François Alcover, Jun 15 2012, translated from Maple, after Alois P. Heinz *)

A225345 T(n,k) = Number of n X k {-1,1}-arrays such that the sum over i=1..n,j=1..k of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute k-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 0, 3, 6, 7, 0, 0, 1, 0, 9, 0, 15, 0, 1, 0, 3, 12, 31, 0, 33, 8, 0, 1, 0, 17, 0, 107, 0, 77, 0, 1, 0, 5, 22, 81, 0, 395, 410, 181, 0, 0, 1, 0, 27, 0, 397, 0, 1525, 0, 443, 0, 1, 0, 5, 34, 171, 0, 2073, 4508, 6095, 0, 1113, 58, 0, 1, 0, 41, 0, 1081, 0
Offset: 1

Views

Author

R. H. Hardin, May 05 2013

Keywords

Comments

Table starts
.0...1...0.....1....0......1.....0.......1.....0........1......0........1
.0...1...0.....1....0......1.....0.......1.....0........1......0........1
.0...1...0.....3....0......3.....0.......5.....0........5......0........7
.2...3...6.....9...12.....17....22......27....34.......41.....48.......57
.0...7...0....31....0.....81.....0.....171.....0......309......0......509
.0..15...0...107....0....397.....0....1081.....0.....2399......0.....4675
.0..33...0...395....0...2073.....0....7261.....0....19709......0....45385
.8..77.410..1525.4508..11291.25056...50659.95130...168289.283338...457627
.0.181...0..6095....0..63121.....0..364051.....0..1478059......0..4749875
.0.443...0.24893....0.360909.....0.2676331.....0.13280209......0.50435657

Examples

			Some solutions for n=4, k=4
.-1.-1.-1..1...-1.-1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1.-1..1
.-1..1..1..1...-1..1..1..1...-1.-1.-1..1....1..1..1..1....1..1..1..1
.-1..1..1..1...-1.-1.-1.-1...-1.-1.-1..1....1..1..1..1...-1.-1.-1..1
.-1.-1.-1..1...-1..1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1..1..1
		

Crossrefs

Column 1 is A063074(n/4).
Row 3 is A063196(n/2+1).
Row 4 is A008810(n+1).
Row 5 is A202254(n/2).

Formula

Empirical for row n:
n=1: a(n) = a(n-2);
n=2: a(n) = a(n-2);
n=3: a(n) = a(n-2) +a(n-4) -a(n-6);
n=4: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5);
n=5: a(n) = 3*a(n-2) -2*a(n-4) -2*a(n-6) +3*a(n-8) -a(n-10);
n=6: [order 26, even n];
n=7: [order 42, even n];
n=8: [order 28];
n=9: [order 58, even n];
n=10: [order 90, even n];
n=11: [order 102, even n];
n=12: [order 66].

A060468 Number of fair distributions (equal sum) of the integers {1,..,4n} between A and B = number of solutions to the equation {+-1 +-2 +- 3 ... +-4*n = 0}.

Original entry on oeis.org

1, 2, 14, 124, 1314, 15272, 187692, 2399784, 31592878, 425363952, 5830034720, 81072032060, 1140994231458, 16221323177468, 232615054822964, 3360682669655028, 48870013251334676, 714733339229024336
Offset: 0

Views

Author

Roland Bacher, Mar 15 2001

Keywords

Examples

			a(1)=2: give either the set {1,4} to A and {2,3} to B or give {2,3} to A and {1,4} to B.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Product[q^(-k) + q^k, {k, 1, 4*n}], q, 0]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Sep 26 2013 *)

Formula

a(n) = coefficient of q^0 in Product_{k=1..4*n} (q^(-k) + q^k).
a(n) = A025591(4n) = A063865(4n) = A063867(4n) = 2*A060005(n). Seems to be close to sqrt(3/32Pi)*16^n/sqrt(n^3 + n^2*0.6 + n*0.1385...) and sqrt(n*Pi/2)*A063074(n). - Henry Bottomley, Jul 30 2005

A063075 Number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box; number of ways to cut a 2n X 2n chessboard into two equal-area pieces along a non-descending line from lower left to upper right and passing through the center.

Original entry on oeis.org

1, 2, 8, 48, 390, 3656, 37834, 417540, 4836452, 58130756, 719541996, 9121965276, 117959864244, 1551101290792, 20689450250926, 279395018584860, 3813887739881184, 52557835511244660, 730403326965323706
Offset: 0

Views

Author

Wouter Meeussen, Aug 03 2001

Keywords

Examples

			For a 6 X 6 board (n=3) the partition (6,6,2,2,2,0) represents a Ferrers plot that does not pass through the center of a 6*6 box.
From _Paul D. Hanna_, Dec 12 2006: (Start)
Central q-binomial coefficients begin:
  1;
  1 + q;
  1 + q + 2*q^2 + q^3 + q^4;
  1 + q + 2*q^2 + 3*q^3 + 3*q^4 + 3*q^5 + 3*q^6 + 2*q^7 + q^8 + q^9;
the coefficients of q in these polynomials form the rows of triangle A063746.
The sums of squared terms in rows of A063746 equal this sequence. (End)
		

Crossrefs

Programs

  • Mathematica
    Table[(#.#)&@Table[T[k, n, n], {k, 0, n^2}], {n, 0, 24}] (* with T[m, a, b] as defined in A047993 *)
  • PARI
    a(n)=polcoef((prod(j=1,n,(1-q^(n+j))/(1-q^j)))^2,n^2,q) \\ Tani Akinari, Jan 28 2022

Formula

a(n) = Sum_{k=0..n^2} A063746(n,k)^2; i.e., equals the sums of the squares of the coefficients of q in the central q-binomial coefficients. - Paul D. Hanna, Dec 12 2006
a(n) = [q^(n^2)](Product_{j=1..n} (1-q^(n+j))/(1-q^j))^2. - Tani Akinari, Jan 28 2022
a(n) ~ sqrt(3) * 2^(4*n - 1/2) / (Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Feb 02 2022

A241810 Number of balanced orbitals over n sectors.

Original entry on oeis.org

1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022
Offset: 0

Views

Author

Peter Luschny, Apr 29 2014

Keywords

Comments

For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is Sum_{k=1..n} Sum_{i=1..k} w(i) where w(i) are the jumps of the orbital represented by -1, 0, 1.

Crossrefs

Programs

  • Mathematica
    np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--];For[j=Length[z],z[[j]]<=z[[i-1]],j--];Join[Take[z,i-2],{z[[j]]},Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]];o=Table[1,{16}];
    n=0;f=0;Print[1];Print[1];While[n<16,n++;f=1-f;If[OddQ[f*n],Print[0],p=Join[-Take[o,n],{f},Take[o,n-f]];c=0;Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++];p=np[p],{(2*n+1-f)!/(2*n!^2)}];Print[2*c]];n=n-f]
    (* Hans Havermann, May 10 2014 *)
  • Sage
    def A241810(n):
        if n == 0: return 1
        A = 0
        T = [0] if is_odd(n) else []
        for i in (1..n//2):
            T.append(-1); T.append(1)
        for p in Permutations(T):
            P = 0; S = 0
            for k in (0..n-1):
                P += p[k]; S += P
            if S == 0: A += 1
        return A
    [A241810(n) for n in (0..32)]

Formula

a(2*n) = A204459(2, n).
a(2*n+1) = A242087(n).
a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n).
a(4*n+2) = 0 for all n (proved by H. Havermann).

Extensions

More terms from Hans Havermann, May 10 2014
a(35), a(36) from Hans Havermann, May 23 2014

A107110 Square array by antidiagonals where T(n,k) is the number of partitions of k into no more than n parts each no more than n. Visible version of A063746.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 3, 2, 1, 1, 0, 0, 0, 3, 3, 2, 1, 1, 0, 0, 0, 3, 5, 3, 2, 1, 1, 0, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 0, 2, 7, 7, 5, 3, 2, 1, 1, 0, 0, 0, 1, 7, 9, 7, 5, 3, 2, 1, 1, 0, 0, 0, 1, 8, 11, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 7, 14, 13, 11, 7, 5, 3, 2
Offset: 0

Views

Author

Henry Bottomley, May 12 2005

Keywords

Examples

			Rows start 1,0,0,0,...; 1,1,0,0,0,...; 1,1,2,1,1,0,0,0,...; 1,1,2,3,3,3,3,2,1,1,0,0,0,...; 1,1,2,3,5,5,7,7,8,7,7,5,5,3,2,1,1,0,0,0,...; etc.
T(4,6)=7 since 6 can be written seven ways with no more than 4 parts each no more than 4: 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, or 2+2+1+1.
		

Crossrefs

Cf. A063746. Fifth row is A102422.

Formula

See A063746 for formulas. T(n, k)=A000041(k) if n>=k. T(n, k)=T(n, n^2-k). T(n, [n^2/2])=A029895(n); T(2n, 2n^2)=A063074(n). Row sums are A000984.

A331545 Triangle of constant term of the symmetric q-binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 0, 4, 0, 8, 0, 4, 0, 1, 1, 1, 4, 8, 12, 12, 8, 4, 1, 1, 1, 0, 5, 0, 18, 0, 18, 0, 5, 0, 1, 1, 1, 5, 13, 24, 32, 32, 24, 13, 5, 1, 1, 1, 0, 6, 0, 33
Offset: 0

Views

Author

Michael Somos, Jan 19 2020

Keywords

Comments

Symmetric q-binomial coefficients are based on symmetric q-numbers [n] := (q^n-1/q^n)/(q-1/q).

Examples

			Triangle begins:
  n\k| 0 1 2 3 4 5 6 7  ...
  ---+----------------
   0 | 1
   1 | 1 1
   2 | 1 0 1
   3 | 1 1 1 1
   4 | 1 0 2 0 1
   5 | 1 1 2 2 1 1
   6 | 1 0 3 0 3 0 1
   7 | 1 1 3 5 5 3 1 1
   ...
		

Crossrefs

Programs

  • Mathematica
    T[ n_, k_] := Coefficient[ QBinomial[ n, k, x^2] / x^(k (n - k)) // FunctionExpand // Expand, x, 0];
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( prod(j = 1, k, (x^(n+1-j) - x^(-n-1+j))/(x^j - x^(-j))), 0))};

Formula

T(2*n, 2*k+1) = 0. T(2*n+1, 3) = A000982(n). T(2*n+1, 5) = A001973(n) if n>=2. T(4*n, 2*n) = A063074(n).
Showing 1-7 of 7 results.