cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A225338 Number of n X 2 -1,1 arrays such that the sum over i=1..n, j=1..2 of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute 2-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 15, 33, 77, 181, 443, 1113, 2837, 7283, 18909, 49635, 131427, 350419, 940417, 2538857, 6890577, 18790165, 51462893, 141509487, 390530601, 1081369087, 3003537529, 8366306613, 23366125605, 65420219243, 183585473369, 516298786843, 1454928750641
Offset: 0

Views

Author

R. H. Hardin, May 05 2013

Keywords

Examples

			All solutions for n=4
.-1..1...-1.-1....1..1
.-1..1....1..1...-1.-1
.-1..1....1..1...-1.-1
.-1..1...-1.-1....1..1
		

Crossrefs

Column 2 of A225345.
Cf. A002426.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1, add(`if`(abs(j)
           b(n, 0$2):
    seq(a(n), n=0..33);  # Alois P. Heinz, Mar 25 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 25 2020

A225339 Number of nX3 -1,1 arrays such that the sum over i=1..n,j=1..3 of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute 3-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

0, 0, 0, 6, 0, 0, 0, 410, 0, 0, 0, 47990, 0, 0, 0, 7030132, 0, 0, 0, 1163743294, 0, 0, 0, 208310242542, 0, 0, 0, 39371238885750, 0, 0, 0, 7745062224896578, 0, 0, 0, 1571069270148096124, 0, 0, 0, 326518765865030556374, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Column 3 of A225345

Examples

			All solutions for n=4
..1..1..1...-1.-1.-1...-1..1..1...-1..1..1...-1.-1..1...-1.-1..1
.-1.-1.-1....1..1..1...-1.-1..1...-1.-1.-1....1..1..1...-1..1..1
.-1.-1.-1....1..1..1...-1.-1..1....1..1..1...-1.-1.-1...-1..1..1
..1..1..1...-1.-1.-1...-1..1..1...-1.-1..1...-1..1..1...-1.-1..1
		

A225340 Number of nX4 -1,1 arrays such that the sum over i=1..n,j=1..4 of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute 4-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

1, 1, 3, 9, 31, 107, 395, 1525, 6095, 24893, 103583, 437763, 1874497, 8116459, 35485099, 156453779, 694956997, 3107415563, 13976787615, 63201012187, 287163163723, 1310481411725, 6004334305049, 27611237977705, 127399143883589
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Column 4 of A225345

Examples

			Some solutions for n=4
.-1..1..1..1....1..1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1..1..1..1
.-1.-1.-1.-1...-1.-1.-1.-1....1..1..1..1...-1.-1..1..1...-1.-1.-1..1
.-1..1..1..1...-1.-1.-1.-1....1..1..1..1...-1.-1..1..1...-1.-1.-1..1
.-1.-1..1..1....1..1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1..1..1..1
		

A225341 Number of nX5 -1,1 arrays such that the sum over i=1..n,j=1..5 of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute 5-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

0, 0, 0, 12, 0, 0, 0, 4508, 0, 0, 0, 2680534, 0, 0, 0, 1985837462, 0, 0, 0, 1663045511892, 0, 0, 0, 1506336601246000, 0, 0, 0, 1440828827246863370, 0, 0, 0, 1434551060282150636452, 0, 0, 0, 1472882578482323918604276, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Column 5 of A225345

Examples

			Some solutions for n=4
.-1.-1.-1.-1..1...-1.-1.-1.-1.-1....1..1..1..1..1...-1.-1.-1..1..1
.-1..1..1..1..1....1..1..1..1..1...-1.-1.-1.-1.-1...-1..1..1..1..1
.-1..1..1..1..1....1..1..1..1..1...-1.-1.-1.-1.-1...-1.-1.-1.-1..1
.-1.-1.-1.-1..1...-1.-1.-1.-1.-1....1..1..1..1..1...-1.-1..1..1..1
		

A225342 Number of nX6 -1,1 arrays such that the sum over i=1..n,j=1..6 of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute 6-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

1, 1, 3, 17, 81, 397, 2073, 11291, 63121, 360909, 2102597, 12439855, 74561687, 451920441, 2765717847, 17069622035, 106139191511, 664358517275, 4183117802521, 26479526009223, 168426949915891, 1076002461947039
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Column 6 of A225345

Examples

			Some solutions for n=4
.-1.-1.-1..1..1..1...-1.-1.-1..1..1..1...-1.-1.-1.-1..1..1...-1.-1.-1.-1.-1..1
.-1.-1.-1.-1..1..1...-1.-1..1..1..1..1...-1..1..1..1..1..1...-1..1..1..1..1..1
.-1..1..1..1..1..1...-1.-1.-1.-1.-1..1...-1.-1.-1.-1..1..1...-1..1..1..1..1..1
.-1.-1.-1.-1..1..1...-1.-1..1..1..1..1...-1.-1.-1..1..1..1...-1.-1.-1.-1.-1..1
		

A225343 Number of nX7 -1,1 arrays such that the sum over i=1..n,j=1..7 of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute 7-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

0, 0, 0, 22, 0, 0, 0, 25056, 0, 0, 0, 47084448, 0, 0, 0, 110202390974, 0, 0, 0, 291612344834026, 0, 0, 0, 834664320724959518, 0, 0, 0, 2522954614267660110474, 0, 0, 0, 7938386813443913197221460, 0, 0, 0, 25757964315025150183357153902, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Column 7 of A225345

Examples

			Some solutions for n=4
.-1.-1.-1.-1..1..1..1...-1.-1..1..1..1..1..1...-1.-1.-1.-1.-1..1..1
.-1.-1.-1..1..1..1..1...-1.-1.-1.-1.-1..1..1...-1..1..1..1..1..1..1
.-1.-1.-1..1..1..1..1...-1.-1.-1.-1.-1..1..1...-1.-1.-1.-1..1..1..1
.-1.-1.-1.-1..1..1..1...-1.-1..1..1..1..1..1...-1.-1.-1.-1..1..1..1
		

A225344 Number of nX8 -1,1 arrays such that the sum over i=1..n,j=1..8 of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute 8-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

1, 1, 5, 27, 171, 1081, 7261, 50659, 364051, 2676331, 20044255, 152452967, 1174757541, 9154016699, 72023900129, 571498084391, 4568690484153, 36765944370729, 297627015600415, 2422216988266317, 19808260648181603
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Column 8 of A225345

Examples

			Some solutions for n=4
.-1.-1.-1.-1..1..1..1..1...-1.-1.-1.-1..1..1..1..1...-1.-1.-1.-1.-1.-1..1..1
.-1.-1..1..1..1..1..1..1...-1.-1.-1.-1.-1.-1..1..1...-1.-1..1..1..1..1..1..1
.-1.-1.-1.-1.-1.-1.-1.-1....1..1..1..1..1..1..1..1...-1.-1..1..1..1..1..1..1
.-1.-1..1..1..1..1..1..1...-1.-1.-1.-1.-1.-1..1..1...-1.-1.-1.-1.-1.-1..1..1
		

A225346 Number of 6Xn -1,1 arrays such that the sum over i=1..6,j=1..n of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute n-across galley oarsmen left-right at 6 fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

0, 15, 0, 107, 0, 397, 0, 1081, 0, 2399, 0, 4675, 0, 8273, 0, 13641, 0, 21267, 0, 31731, 0, 45637, 0, 63697, 0, 86635, 0, 115291, 0, 150513, 0, 193269, 0, 244527, 0, 305383, 0, 376929, 0, 460389, 0, 556975, 0, 668043, 0, 794921, 0, 939097, 0, 1102023, 0, 1285311
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Row 6 of A225345

Examples

			Some solutions for n=4
.-1..1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1.-1..1..1...-1..1..1..1
.-1.-1.-1..1...-1..1..1..1....1..1..1..1...-1.-1..1..1...-1.-1.-1.-1
.-1.-1.-1..1....1..1..1..1...-1.-1.-1..1....1..1..1..1...-1.-1.-1..1
..1..1..1..1...-1.-1.-1..1...-1.-1.-1.-1...-1.-1.-1.-1....1..1..1..1
.-1.-1.-1.-1....1..1..1..1...-1.-1.-1..1...-1.-1.-1.-1....1..1..1..1
.-1..1..1..1...-1.-1.-1.-1....1..1..1..1....1..1..1..1...-1.-1.-1.-1
		

Formula

Empirical: a(n) = a(n-2) +2*a(n-4) -a(n-6) -2*a(n-8) +a(n-12) -a(n-14) +2*a(n-18) +a(n-20) -2*a(n-22) -a(n-24) +a(n-26)

A225347 Number of 7Xn -1,1 arrays such that the sum over i=1..7,j=1..n of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute n-across galley oarsmen left-right at 7 fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

0, 33, 0, 395, 0, 2073, 0, 7261, 0, 19709, 0, 45385, 0, 92673, 0, 173189, 0, 301799, 0, 497661, 0, 783969, 0, 1189311, 0, 1747059, 0, 2497109, 0, 3484867, 0, 4763439, 0, 6392095, 0, 8439027, 0, 10979255, 0, 14097919, 0, 17887629, 0, 22452391, 0
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Row 7 of A225345

Examples

			Some solutions for n=4
.-1.-1..1..1...-1.-1.-1..1...-1.-1..1..1...-1.-1.-1.-1...-1.-1..1..1
.-1.-1..1..1....1..1..1..1...-1.-1..1..1...-1..1..1..1...-1.-1.-1.-1
.-1.-1.-1..1...-1.-1..1..1...-1.-1..1..1...-1..1..1..1...-1..1..1..1
.-1..1..1..1...-1.-1..1..1....1..1..1..1....1..1..1..1....1..1..1..1
.-1..1..1..1...-1.-1.-1..1...-1.-1.-1.-1...-1.-1.-1.-1...-1.-1.-1..1
.-1.-1.-1..1...-1.-1.-1.-1...-1.-1.-1.-1...-1..1..1..1....1..1..1..1
.-1.-1..1..1....1..1..1..1....1..1..1..1...-1.-1.-1..1...-1.-1.-1.-1
		

Formula

Empirical: a(n) = a(n-2) +a(n-4) -a(n-10) -2*a(n-14) +a(n-18) +a(n-20) +a(n-22) +a(n-24) -2*a(n-28) -a(n-32) +a(n-38) +a(n-40) -a(n-42)

A225348 Number of 8Xn -1,1 arrays such that the sum over i=1..8,j=1..n of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute n-across galley oarsmen left-right at 8 fore-aft positions so that there are no turning moments on the ship).

Original entry on oeis.org

8, 77, 410, 1525, 4508, 11291, 25056, 50659, 95130, 168289, 283338, 457627, 713374, 1078615, 1587974, 2283803, 3217102, 4448769, 6050622, 8106883, 10715232, 13988475, 18055740, 23064277, 29180742, 36593245, 45512628, 56174753, 68841880
Offset: 1

Views

Author

R. H. Hardin May 05 2013

Keywords

Comments

Row 8 of A225345

Examples

			Some solutions for n=4
.-1..1..1..1...-1..1..1..1...-1..1..1..1...-1..1..1..1...-1.-1..1..1
.-1..1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1
.-1.-1..1..1...-1.-1..1..1...-1..1..1..1...-1..1..1..1...-1..1..1..1
.-1.-1.-1.-1...-1.-1.-1.-1...-1.-1.-1..1...-1.-1.-1.-1...-1.-1.-1..1
.-1.-1.-1.-1...-1.-1.-1..1...-1.-1..1..1...-1.-1.-1..1....1..1..1..1
.-1..1..1..1...-1.-1.-1..1...-1..1..1..1...-1.-1..1..1...-1.-1..1..1
.-1.-1.-1..1...-1.-1..1..1....1..1..1..1...-1.-1.-1..1...-1.-1.-1..1
..1..1..1..1....1..1..1..1...-1.-1.-1.-1....1..1..1..1...-1.-1..1..1
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) -a(n-5) -a(n-7) -a(n-8) +a(n-10) +a(n-11) +2*a(n-12) -2*a(n-16) -a(n-17) -a(n-18) +a(n-20) +a(n-21) +a(n-23) -a(n-26) -a(n-27) +a(n-28)
Showing 1-10 of 14 results. Next