cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A063074 Number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box; number of ways to cut a 2n X 2n chessboard into two equal-area pieces along a non-descending line from lower left to upper right.

Original entry on oeis.org

1, 2, 8, 58, 526, 5448, 61108, 723354, 8908546, 113093022, 1470597342, 19499227828, 262754984020, 3589093760726, 49596793134484, 692260288169282, 9747120868919060, 138298900243896166, 1975688102624819336, 28396056820503468894, 410363630540693436398
Offset: 0

Views

Author

Wouter Meeussen, Aug 03 2001

Keywords

Comments

Also the number of subsets of {1,...,4*n} containing exactly 2*n elements with total sum n*(4*n+1) (see also A060468 for a related sequence). This is of course the same as the number of partitions of n*(4*n+1) having 2*n distinct parts of length at most 4*n. This number is the coefficient of t^0 q^0 in Product_{k=1..4*n} (t*q^k + 1/(t*q^k)). - Roland Bacher, May 02 2002
A bijection with a dissection as above of the 2n X 2n checkerboard is given by subtracting 1,2,3,...,2n of the smallest, second-smallest, etc. element in the subset. Example for n=2: {1,2,7,8} (yields the checkerboard partition {1-1,2-2,7-3,8-4}={0,0,4,4}), {1,3,6,8} (yields {1-1,3-2,6-3,8-4}={0,1,3,4}), {1,4,5,8} (yields {0,2,2,4}), {1,4,6,7} (yields {0,2,3,3}), {3,4,5,6} (yields {2,2,2,2}), {2,4,5,7} (yields {1,2,2,3}), {2,3,6,7} (yields {1,1,3,3}), {2,3,5,8} (yields {1,1,2,4}).
Appears to be the number of random walks of length 4n, moves +/-1, starting and ending at 0 and with signed area 0 under the path. It would be nice to have a lower bound of the form a(n) > c*2^{4n}/n^d. - David_Mumford(AT)brown.edu, Jun 25 2003

Examples

			For a 4 X 4 board (n=2) the 8 partitions are (4,4,0,0), (4,3,1,0), (4,2,1,1), (4,2,2,0), (3,3,2,0), (3,3,1,1), (3,2,2,1), (2,2,2,2).
		

Crossrefs

Bisection of row n=2 of A204459. - Alois P. Heinz, Jan 18 2012

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(it*(2*i-t+1)/2, 0,
          `if`(n=0, 1, b(n, i-1, t) +`if`(n b(n*(4*n+1), 4*n, 2*n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 18 2012
  • Mathematica
    Table[ Length@Select[ IntegerPartitions[ 2n^2 ], Length[ # ] <= 2n && First[ # ] <= 2n& ], {n, 1, 5} ] or faster: Table[ T[ 2n^2, 2n, 2n ], {n, 0, 24} ] with T[ m, a, b ] as defined in A047993.
    (* second program: *)
    b[n_, i_, t_] := b[n, i, t] =  If[i < t || n < t (t + 1)/2 || n > t (2i - t + 1)/2, 0, If[n == 0, 1, b[n, i - 1, t] + If[n < i, 0, b[n - i, i - 1, t - 1]]]]; a[n_] := b[n (4n + 1), 4n, 2n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) = A029895(2n) = A067059(2n, 2n) = A107110(2n, 2n^2). a(n) seems to be close to (sqrt(75)/Pi)*16^n/(20n^2+6n+1). - Henry Bottomley, May 12 2005

Extensions

More terms from Alois P. Heinz, Jan 18 2012

A125806 Triangle of the sum of squared coefficients of q in the q-binomial coefficients, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 16, 16, 5, 1, 1, 6, 29, 48, 29, 6, 1, 1, 7, 47, 119, 119, 47, 7, 1, 1, 8, 72, 256, 390, 256, 72, 8, 1, 1, 9, 104, 500, 1070, 1070, 500, 104, 9, 1, 1, 10, 145, 900, 2592, 3656, 2592, 900, 145, 10, 1, 1, 11, 195, 1525, 5674, 10762, 10762, 5674, 1525, 195, 11, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 11 2006

Keywords

Comments

Central terms equal A063075 (number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box).

Examples

			The triangle of q-binomial coefficients:
C_q(n,k) = [Product_{i=n-k+1..n}(1-q^i)]/[Product_{j=1..k}(1-q^j)]
begins:
1;
1, 1;
1, 1+q, 1;
1, 1+q+q^2, 1+q+q^2, 1;
1, 1+q+q^2+q^3, 1+q+2*q^2+q^3+q^4, 1+q+q^2+q^3, 1; ...
recurrence: C_q(n+1,k) = C_q(n,k-1) + q^k * C_q(n,k).
Element T(n,k) of this triangle equals the sum of the squares
of the coefficients of q in q-binomial coefficient C_q(n,k).
This triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 8, 4, 1;
1, 5, 16, 16, 5, 1;
1, 6, 29, 48, 29, 6, 1;
1, 7, 47, 119, 119, 47, 7, 1;
1, 8, 72, 256, 390, 256, 72, 8, 1;
1, 9, 104, 500, 1070, 1070, 500, 104, 9, 1;
1, 10, 145, 900, 2592, 3656, 2592, 900, 145, 10, 1;
1, 11, 195, 1525, 5674, 10762, 10762, 5674, 1525, 195, 11, 1;
1, 12, 256, 2456, 11483, 28160, 37834, 28160, 11483, 2456, 256, 12, 1;
The central terms equal A063075:
1, 2, 8, 48, 390, 3656, 37834, 417540, 4836452, 58130756, ...
MATRIX INVERSE.
The matrix inverse starts
1;
-1,1;
1,-2,1;
-1,3,-3,1;
-1,0,4,-4,1;
9,-21,12,4,-5,1;
-1,34,-73,44,1,-6,1;
-219,479,-219,-139,109,-5,-7,1;
101,-1536,3072,-1776,-54,216,-16,-8,1; - _R. J. Mathar_, Mar 22 2013
		

Crossrefs

Cf. A063075 (central terms); A125807, A125808, A125809 (row sums).

Programs

  • Maple
    C := proc(q,n,k)
        local i,j ;
        mul(1-q^i,i=n-k+1..n)/mul(1-q^j,j=1..k) ;
        expand(factor(%)) ;
    end proc:
    A125806 := proc(n,k)
        local qbin ,q;
        qbin := [coeffs(C(q,n,k),q)] ;
        add( e^2,e=qbin) ;
    end proc: # R. J. Mathar, Mar 22 2013
  • Mathematica
    T[n_, k_] := Module[{cc, q}, cc = CoefficientList[QBinomial[n, k, q] // FunctionExpand, q]; cc.cc];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 08 2023 *)
  • PARI
    T(n,k)=local(C_q=if(n==0 || k==0,1,prod(j=n-k+1,n,1-q^j)/prod(j=1,k,1-q^j))); sum(i=0,(n-k)*k,polcoeff(C_q,i)^2)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

A125807 Central terms of odd-indexed rows of triangle A125806: a(n) = A125806(2n+1,n).

Original entry on oeis.org

1, 3, 16, 119, 1070, 10762, 116546, 1330923, 15823388, 194168612, 2444224858, 31422225930, 411141476444, 5460849893348, 73474839110524, 999764999592077, 13738614091375204, 190450074950481408, 2660727794475865450
Offset: 0

Views

Author

Paul D. Hanna, Dec 12 2006

Keywords

Comments

Central terms of even-indexed rows of triangle A125806 equal A063075 (number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box).

Crossrefs

Cf. A125806 (triangle); A063075; A125808, A125809 (row sums).

Programs

  • PARI
    {a(n)=local(C_q=if(n==0,1,prod(j=n+2,2*n+1,1-q^j)/prod(j=1,n,1-q^j))); sum(i=0,(n+1)*n,polcoeff(C_q,i)^2)}

A125808 Adjacent-to-central terms of even-indexed rows of triangle A125806: a(n) = A125806(2n+2,n).

Original entry on oeis.org

1, 4, 29, 256, 2592, 28160, 322873, 3850352, 47369432, 597565304, 7695966346, 100852014156, 1341310032320, 18067954497864, 246098396499471, 3384883529933828, 46960152641672616, 656538880287562528
Offset: 0

Views

Author

Paul D. Hanna, Dec 12 2006

Keywords

Comments

Central terms of even-indexed rows of triangle A125806 equal A063075 (number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box).

Crossrefs

Cf. A125806 (triangle); A063075; A125807, A125809 (row sums).

Programs

  • PARI
    {a(n)=local(C_q=if(n==0,1,prod(j=n+3,2*n+2,1-q^j)/prod(j=1,n,1-q^j))); sum(i=0,(n+2)*n,polcoeff(C_q,i)^2)}

A125809 Row sums of triangle A125806.

Original entry on oeis.org

1, 2, 4, 8, 18, 44, 120, 348, 1064, 3368, 10952, 36336, 122570, 419104, 1449672, 5064240, 17844558, 63356072, 226459120, 814323856, 2944055592, 10695723368, 39029679176, 142998497292, 525862368660, 1940381764088, 7182278240848
Offset: 0

Views

Author

Paul D. Hanna, Dec 12 2006

Keywords

Comments

Triangle A125806 gives the sum of squared coefficients of q in the corresponding q-binomial coefficients.

Crossrefs

Cf. A125806 (triangle); A063075, A125807, A125808.

Programs

  • PARI
    {a(n)=sum(k=0,n,sum(i=0,(n-k)*k, polcoeff(if(n==0,1,prod(j=n-k+1,n,1-q^j)/prod(j=1,k,1-q^j)),i)^2))}
Showing 1-5 of 5 results.