cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125806 Triangle of the sum of squared coefficients of q in the q-binomial coefficients, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 16, 16, 5, 1, 1, 6, 29, 48, 29, 6, 1, 1, 7, 47, 119, 119, 47, 7, 1, 1, 8, 72, 256, 390, 256, 72, 8, 1, 1, 9, 104, 500, 1070, 1070, 500, 104, 9, 1, 1, 10, 145, 900, 2592, 3656, 2592, 900, 145, 10, 1, 1, 11, 195, 1525, 5674, 10762, 10762, 5674, 1525, 195, 11, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 11 2006

Keywords

Comments

Central terms equal A063075 (number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box).

Examples

			The triangle of q-binomial coefficients:
C_q(n,k) = [Product_{i=n-k+1..n}(1-q^i)]/[Product_{j=1..k}(1-q^j)]
begins:
1;
1, 1;
1, 1+q, 1;
1, 1+q+q^2, 1+q+q^2, 1;
1, 1+q+q^2+q^3, 1+q+2*q^2+q^3+q^4, 1+q+q^2+q^3, 1; ...
recurrence: C_q(n+1,k) = C_q(n,k-1) + q^k * C_q(n,k).
Element T(n,k) of this triangle equals the sum of the squares
of the coefficients of q in q-binomial coefficient C_q(n,k).
This triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 8, 4, 1;
1, 5, 16, 16, 5, 1;
1, 6, 29, 48, 29, 6, 1;
1, 7, 47, 119, 119, 47, 7, 1;
1, 8, 72, 256, 390, 256, 72, 8, 1;
1, 9, 104, 500, 1070, 1070, 500, 104, 9, 1;
1, 10, 145, 900, 2592, 3656, 2592, 900, 145, 10, 1;
1, 11, 195, 1525, 5674, 10762, 10762, 5674, 1525, 195, 11, 1;
1, 12, 256, 2456, 11483, 28160, 37834, 28160, 11483, 2456, 256, 12, 1;
The central terms equal A063075:
1, 2, 8, 48, 390, 3656, 37834, 417540, 4836452, 58130756, ...
MATRIX INVERSE.
The matrix inverse starts
1;
-1,1;
1,-2,1;
-1,3,-3,1;
-1,0,4,-4,1;
9,-21,12,4,-5,1;
-1,34,-73,44,1,-6,1;
-219,479,-219,-139,109,-5,-7,1;
101,-1536,3072,-1776,-54,216,-16,-8,1; - _R. J. Mathar_, Mar 22 2013
		

Crossrefs

Cf. A063075 (central terms); A125807, A125808, A125809 (row sums).

Programs

  • Maple
    C := proc(q,n,k)
        local i,j ;
        mul(1-q^i,i=n-k+1..n)/mul(1-q^j,j=1..k) ;
        expand(factor(%)) ;
    end proc:
    A125806 := proc(n,k)
        local qbin ,q;
        qbin := [coeffs(C(q,n,k),q)] ;
        add( e^2,e=qbin) ;
    end proc: # R. J. Mathar, Mar 22 2013
  • Mathematica
    T[n_, k_] := Module[{cc, q}, cc = CoefficientList[QBinomial[n, k, q] // FunctionExpand, q]; cc.cc];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 08 2023 *)
  • PARI
    T(n,k)=local(C_q=if(n==0 || k==0,1,prod(j=n-k+1,n,1-q^j)/prod(j=1,k,1-q^j))); sum(i=0,(n-k)*k,polcoeff(C_q,i)^2)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

A125807 Central terms of odd-indexed rows of triangle A125806: a(n) = A125806(2n+1,n).

Original entry on oeis.org

1, 3, 16, 119, 1070, 10762, 116546, 1330923, 15823388, 194168612, 2444224858, 31422225930, 411141476444, 5460849893348, 73474839110524, 999764999592077, 13738614091375204, 190450074950481408, 2660727794475865450
Offset: 0

Views

Author

Paul D. Hanna, Dec 12 2006

Keywords

Comments

Central terms of even-indexed rows of triangle A125806 equal A063075 (number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box).

Crossrefs

Cf. A125806 (triangle); A063075; A125808, A125809 (row sums).

Programs

  • PARI
    {a(n)=local(C_q=if(n==0,1,prod(j=n+2,2*n+1,1-q^j)/prod(j=1,n,1-q^j))); sum(i=0,(n+1)*n,polcoeff(C_q,i)^2)}

A125808 Adjacent-to-central terms of even-indexed rows of triangle A125806: a(n) = A125806(2n+2,n).

Original entry on oeis.org

1, 4, 29, 256, 2592, 28160, 322873, 3850352, 47369432, 597565304, 7695966346, 100852014156, 1341310032320, 18067954497864, 246098396499471, 3384883529933828, 46960152641672616, 656538880287562528
Offset: 0

Views

Author

Paul D. Hanna, Dec 12 2006

Keywords

Comments

Central terms of even-indexed rows of triangle A125806 equal A063075 (number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box).

Crossrefs

Cf. A125806 (triangle); A063075; A125807, A125809 (row sums).

Programs

  • PARI
    {a(n)=local(C_q=if(n==0,1,prod(j=n+3,2*n+2,1-q^j)/prod(j=1,n,1-q^j))); sum(i=0,(n+2)*n,polcoeff(C_q,i)^2)}
Showing 1-3 of 3 results.