cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007219 Number of golygons of order 8n (or serial isogons of order 8n).

Original entry on oeis.org

1, 28, 2108, 227322, 30276740, 4541771016, 739092675672, 127674038970623, 23085759901610016, 4327973308197103600, 835531767841066680300, 165266721954751746697155, 33364181616540879268092840
Offset: 1

Views

Author

Keywords

Comments

A golygon of order N is a closed path along the streets of the Manhattan grid with successive edge lengths of 1,2,3,...,N (returning to the starting point after the edge of length N), and which makes a 90-degree turn (left or right) after each edge.
It is known that the order N must be a multiple of 8.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 92.

Crossrefs

See also A006718.

Programs

  • Mathematica
    p1[n_] := Product[x^k + 1, {k, 1, n - 1, 2}] // Expand; p2[n_] := Product[x^k + 1, {k, 1, n/2}] // Expand; c[n_] := Coefficient[p1[n], x, n^2/8] * Coefficient[p2[n], x, n (n/2 + 1)/8]; a[n_] := c[8*n]/4; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Jul 24 2013, after Eric W. Weisstein *)

Formula

a(n) = A006718(n)/4. - Charles R Greathouse IV, Apr 29 2012
a(n) ~ 3*2^(8*n-6)/(Pi*n^2*(4*n+1)). - Vaclav Kotesovec, Dec 09 2013

Extensions

Two more terms from N. J. A. Sloane (from the reference), May 23 2005

A101856 Number of non-intersecting polygons that it is possible for an accelerating ant to produce with n steps (rotations & reflections not included). On step 1 the ant moves forward 1 unit, then turns left or right and proceeds 2 units, then turns left or right until at the end of its n-th step it arrives back at its starting place.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 25, 67, 0, 0, 0, 0, 0, 0, 515, 1259, 0, 0, 0, 0, 0, 0, 15072, 41381, 0, 0, 0, 0, 0, 0, 588066, 1651922, 0, 0, 0, 0, 0, 0, 25263990, 73095122, 0, 0, 0, 0, 0, 0, 1194909691, 3492674650, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gordon Hamilton, Jan 27 2005

Keywords

Comments

This walk by an accelerating ant can only arrive back at the starting point after n steps where n is 0 or -1 mod(8).

Examples

			For example: a(7) = 1 because of the following solution:
655555...
6....4...
6....4...
6....4...
6....4333
6.......2
777777712
where the ant starts at the "1" and moves right 1 space, up 2 spaces and so on...
From _Seiichi Manyama_, Sep 23 2017: (Start)
a(8) = 1 because of the following solution:
(0, 0) -> (1, 0) -> (1, 2) -> (-2, 2) -> (-2, -2) -> (-7, -2) -> (-7, -8) -> (0, -8) -> (0, 0).
.....4333
.....4..2
.....4.12
.....4.8.
655555.8.
6......8.
6......8.
6......8.
6......8.
6......8.
77777778.
a(15) = 1 because of the following solution:
(0, 0) -> (1, 0) -> (1, 2) -> (4, 2) -> (4, -2) -> (-1, -2) -> (-1, -8) -> (-8, -8) -> (-8, -16) -> (-17, -16) -> (-17, -26) -> (-28, -26) -> (-28, -14) -> (-15, -14) -> (-15, 0) -> (0, 0).
a(16) = 3 because of the following solutions:
(0, 0) -> (1, 0) -> (1, 2) -> (4, 2) -> (4, 6) -> (-1, 6) -> (-1, 12) -> (-8, 12) -> (-8, 20) -> (-17, 20) -> (-17, 10) -> (-28, 10) -> (-28, -2) -> (-15, -2) -> (-15, -16) -> (0, -16) -> (0, 0),
(0, 0) -> (1, 0) -> (1, 2) -> (4, 2) -> (4, 6) -> (-1, 6) -> (-1, 0) -> (-8, 0) -> (-8, -8) -> (-17, -8) -> (-17, -18) -> (-28, -18) -> (-28, -30) -> (-15, -30) -> (-15, -16) -> (0, -16) -> (0, 0),
(0, 0) -> (1, 0) -> (1, 2) -> (4, 2) -> (4, -2) -> (-1, -2) -> (-1, -8) -> (-8, -8) -> (-8, 0) -> (-17, 0) -> (-17, -10) -> (-28, -10) -> (-28, 2) -> (-15, 2) -> (-15, 16) -> (0, 16) -> (0, 0). (End)
		

References

  • Dudeney, A. K. "An Odd Journey Along Even Roads Leads to Home in Golygon City." Sci. Amer. 263, 118-121, 1990.

Crossrefs

Programs

  • Ruby
    def A101856(n)
      ary = [0, 0]
      b_ary = [[[0, 0], [1, 0], [1, 1], [1, 2]]]
      s = 4
      (3..n).each{|i|
        s += i
        t = 0
        f_ary, b_ary = b_ary, []
        if i % 2 == 1
          f_ary.each{|a|
            b = a.clone
            x, y = *b[-1]
            b += (1..i).map{|j| [x + j, y]}
            b_ary << b if b.uniq.size == s
            t += 1 if b[-1] == [0, 0] && b.uniq.size == s - 1
            c = a.clone
            x, y = *c[-1]
            c += (1..i).map{|j| [x - j, y]}
            b_ary << c if c.uniq.size == s
            t += 1 if c[-1] == [0, 0] && c.uniq.size == s - 1
          }
        else
          f_ary.each{|a|
            b = a.clone
            x, y = *b[-1]
            b += (1..i).map{|j| [x, y + j]}
            b_ary << b if b.uniq.size == s
            t += 1 if b[-1] == [0, 0] && b.uniq.size == s - 1
            c = a.clone
            x, y = *c[-1]
            c += (1..i).map{|j| [x, y - j]}
            b_ary << c if c.uniq.size == s
            t += 1 if c[-1] == [0, 0] && c.uniq.size == s - 1
          }
        end
        ary << t
      }
      ary[0..n - 1]
    end
    p A101856(16) # Seiichi Manyama, Sep 24 2017

Extensions

a(31)-a(70) from Bert Dobbelaere, Jan 01 2019
Showing 1-2 of 2 results.