cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060005 Number of ways of partitioning the integers {1,2,..,4n} into two (unordered) sets such that the sums of parts are equal in both sets (parts in either set will add up to (4n)*(4n+1)/4). Number of solutions to {1 +- 2 +- 3 +- ... +- 4n=0}.

Original entry on oeis.org

1, 1, 7, 62, 657, 7636, 93846, 1199892, 15796439, 212681976, 2915017360, 40536016030, 570497115729, 8110661588734, 116307527411482, 1680341334827514, 24435006625667338, 357366669614512168, 5253165510907071170
Offset: 0

Views

Author

Roland Bacher, Mar 15 2001

Keywords

Examples

			a(1)=1 since there is only one way of partitioning {1,2,3,4} into two sets of equal sum, namely {1,4}, {2,3}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
        end:
    a:= n-> b(4*n, 4*n-1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 30 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{m = i*(i+1)/2}, If[n > m, 0, If[n == m, 1, b[Abs[n-i], i-1] + b[n+i, i-1]]]]; a[n_] := b[4*n, 4*n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 26 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(0)=1 and a(n) is half the coefficient of q^0 in product((q^(-k)+q^k), k=1..4*n) for n >= 1.
For n>=1, a(n) = (1/Pi)*16^n*J(4n) where J(n) = integral(t=0, Pi/2, cos(t)cos(2t)...cos(nt)dt). - Benoit Cloitre, Sep 24 2006

Extensions

More terms from Alois P. Heinz, Oct 30 2011

A006718 Number of golygons of length 8n.

Original entry on oeis.org

1, 4, 112, 8432, 909288, 121106960, 18167084064, 2956370702688, 510696155882492, 92343039606440064, 17311893232788414400, 3342127071364266721200, 661066887819006986788620, 133456726466163517072371360
Offset: 0

Views

Author

Keywords

Comments

A007219 is the main entry for golygons.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 92.

Crossrefs

See A007219 for much more information about golygons.

Programs

  • Mathematica
    p1[n_] := Product[x^k + 1, {k, 1, n - 1, 2}] // Expand; p2[n_] := Product[x^k + 1, {k, 1, n/2}] // Expand; c[n_] := Coefficient[p1[n], x, n^2/8] * Coefficient[p2[n], x, n (n/2 + 1)/8]; a[n_] := c[8*n]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Jul 24 2013, after Eric W. Weisstein *)

Formula

a(n) = 4 * A007219(n) for n > 0. - Charles R Greathouse IV, Apr 29 2012
a(n) = A060468(n) * A292476(2*n) = A063865(4*n) * A292476(2*n). - Seiichi Manyama, Sep 18 2017

Extensions

a(0) = 1 prepended by Seiichi Manyama, Sep 18 2017

A107350 Number of isogons with a certain property.

Original entry on oeis.org

1, 4, 34, 346, 3965, 48396, 615966, 8082457, 108545916, 1484716135, 20612084010, 289688970195, 4113620233260, 58930127470164, 850641610106596, 12360278974175769, 180648953113093368, 2653875476976308643, 39167191622334514398, 580439539153823110678, 8633956582855204662785
Offset: 1

Views

Author

N. J. A. Sloane, May 23 2005

Keywords

Comments

This and A060005 appear in the reference as incidental sequences when computing A007219.

Crossrefs

Programs

  • Maple
    A107350 := proc(n) res := 1 ; for i from 0 to 4*n-1 do res := taylor(res*(1+x^(2*i+1)),x=0,8*n^2+1) ; od ; coeftayl(res,x=0,8*n^2)/2 ; end: for n from 1 to 25 do printf("%d, ",A107350(n)) ; od ; # R. J. Mathar, May 08 2007
  • Mathematica
    a[n_] := SeriesCoefficient[Product[x^(2k - 1) + 1/x^(2k - 1), {k, 1, 4n}], {x, 0, 0}]/2;
    Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 10 2023 *)

Formula

product[ {1+x^(2i+1)},i=0,1,...,4n-1] = 1+...+2*a(n)*x^(8n^2)+.... (g.f.). - R. J. Mathar, May 08 2007
a(n) = A292476(2*n)/2. - Seiichi Manyama, Sep 18 2017

Extensions

More terms from R. J. Mathar, May 08 2007

A292700 1/4 of the number of paths that are made of alternate vertical and horizontal 4*n consecutive prime (> 2 and < prime(4*n+2)) steps. (Each path begins and ends at the same point but is allowed to intersect itself.)

Original entry on oeis.org

0, 0, 0, 2, 4, 40, 756, 8466, 70664, 788240, 11086299, 114208465, 1536869680, 19129734630, 228346732944, 3059857239120, 38601632542723, 509554928113867, 6793745301391293, 92409631618813044, 1240139159309482820, 16995549322569645324, 236256012348427662180
Offset: 1

Views

Author

Seiichi Manyama, Sep 21 2017

Keywords

Examples

			U, D, L and R express up, down, left and right.
n = 4:
3R, 5U, 7L, 11D, 13L, 17U, 19R, 23U, 29L, 31U, 37R, 41U, 43R, 47D, 53L, 59D.
3R, 5U, 7L, 11U, 13L, 17D, 19R, 23U, 29L, 31U, 37R, 41D, 43R, 47U, 53L, 59D.
		

Crossrefs

Formula

Constant term in the expansion of (1/4) * Product_{k=1..2*n} (x^prime(2*k) + 1/x^prime(2*k)) * Product_{k=1..2*n} (y^prime(2*k+1) + 1/y^prime(2*k+1)).
a(n) = A292698(n) * A292699(n).

A273089 Number of lattice n-gons with ordered sides 1, 2, 3, ..., n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 5, 6, 0, 0, 584, 882, 0, 0, 18026, 194741, 0, 0, 644414, 960834, 0, 0, 229910636
Offset: 1

Views

Author

Bernardo Recamán, May 14 2016

Keywords

Comments

First 16 terms calculated by Stefan Kohl.

Examples

			a(8) = 3:
  . . . . . ._._._.   . . . . . . . .    ._._._._._._._.
  . . . . . | . . |   . . . . . . . .    | . . . . . . |
  . . . . . | . ._|   ._._._._._._._.    | . . . . . . |
  . . . . . | . | .   | . . . . . . |    | . . . . . . |
  ._._._._._| . | .   | . . .   . . |    | . . . . . . |
  | . . . . . . | .   | . . . |\. . |    | . . . . . . |
  | . . . . . . | .   | . . . | \ . |    | ._._._. . . |
  | . . . . . . | .   | . . . | .\5 |    | | . . | . ./.
  | . . . . . . | .   | ._._._| . .\|    |_| . . | ./5 .
  | . . . . . . | .   | | . . . . . .    . . . . | / . .
  |_._._._._._._| .   |_| . . . . . .    . . . . |/. . .
.
a(11) = 5:
  . . . . . . . . . . . ._._._._._._._._._. . . . . . . .
  . . . . . . . . . . . .\. . . . . . . . | . . . . . . .
  . . . . . . . . . . . . . \ . . . . . . | . . . . . . .
  . . . . . . . ._._._. . . . .\. . . . . | . . . . . . .
  . . . . . . . | . . | . . . . .10 . . . | . . . . . . .
  . . . . . . ._| . . | . . . . . . \ . . | . . . . . . .
  . . . . . . | . . . | . . . . . . . .\. | . . . . . . .
  . . . . . . | . . . | . . . . . . . . | | . . . . . . .
  . . . . . . | . . . . \ . . . . . . . | |_._._._._._._.
  |\. . . . . | . . . . . 5 \ . . . . . | . . . . . . . |
  | \ . . . . | . ._._._._._._. . . . . | . . . . . . . |
  | .\. . . . | . | . . . . . . . . . . | . . . . . . . |
  | . .\. . . | . | . . . . . . . . . . | . . . | \ . . |
  | . . 10. . | . | . . . . . . . . . . | . . . | . 5 . |
  | . . . \ . | . | . . . . . . . . . . | . . . | . . \ |
  | . . . . \ | . | . . . . . . . . . . | ._._._| . . . .
  | . . . . .\| . | . . . . . . . . . . | | . . . . . . .
  |_._._._._._._._| . . . . . . . . . . |_| . . . . . . .
.
  . ._._._. . . . . . . . . . . . . . . . . . . . . . . . . . . .
  . | . . | . . . . . . . . . . . . . . . . . ./| . . . . . . . .
  ._| . . | . . . . . . . . . . . . . . . . ./. | . . . . . . . .
  | . . . | . . . . . . . . . . . . . . . . / . | . . . . . . . .
  | . . . | . . . . . . . . . . . . . . . ./. . | . . . . . . . .
  | . . . .\. . . . . . . . . . . . . . .10 . . | . . . . . . . .
  | . . . . . 5 . . . . . . . . . . . . / . . . | . . . . . . . .
  | . . . . . . .\. . . . . . . . . . / . . . . | . . . . . . . .
  | . . . . . . . | . . . . . . . . ./. . . . . | . . . . . . . .
  | . . . . . . . | . . . . . . . . | . . . . . |_._._._._._._._.
  | . . . . . . . | . . . . . . . . | . . . . . . . . . . . . . |
  | . . . . . . . | . . . . . . . . | . . . . . . . . . . . . . |
  | . . . . . . . | . . . . . . . . | . . . . . . . . . . . . . |
  | . . . . . . . |_._._._._._._. . | . . . . . . . . . . . . . |
  .\. . . . . . . . . . . . . . | . | . . . | \ . . . . . . . . |
  . \ . . . . . . . . . . . . . | . | . . . | . .5. . . . . . . |
  . . \ . . . . . . . . . . . . | . | . . . | . . .\._._._._._._|
  . . . \ . . . . . . . . . . . | . | ._._._| . . . . . . . . . .
  . . . 10. . . . . . . . . . . | . | | . . . . . . . . . . . . .
  . . . . \ . . . . . . . . . . | . |_| . . . . . . . . . . . . .
  . . . . . \ . . . . . . . . . |
  . . . . . .\._._._._._._._._._|
.
  . . . . . . . . . . . . . . . .
  |\. . . . . . . . . . . . . . .
  | .\. . . . . . . . . . . . . .
  | . \ . . . . . . . . . . . . .
  | . . \ . . . . . . . . . . . .
  | . . 10. . . . . . . . . . . .
  | . . . .\. . . . . . . . . . .
  | . . . . \ . . . . . . . . . .
  | . . . . . \_._._._._._._._._.
  | ._._._. . . . . . . . . . . |
  | | . . | . . . . . . . . . . |
  |_| . . | . . ./| . . . . . . |
  . . . . | . 5 . | . . . . . . |
  . . . . |/. . . | . . . . . . |
  . . . . . . . . | . . . . . . |
  . . . . . . . . | . . . . . . |
  . . . . . . . . |_._._._._._._|
. - _Hugo Pfoertner_, Mar 20 2020
		

Crossrefs

Cf. A007219.

Extensions

Typo in a(15) corrected and a(17)-a(27) added by Giovanni Resta, Mar 26 2020
Showing 1-5 of 5 results.