A060005
Number of ways of partitioning the integers {1,2,..,4n} into two (unordered) sets such that the sums of parts are equal in both sets (parts in either set will add up to (4n)*(4n+1)/4). Number of solutions to {1 +- 2 +- 3 +- ... +- 4n=0}.
Original entry on oeis.org
1, 1, 7, 62, 657, 7636, 93846, 1199892, 15796439, 212681976, 2915017360, 40536016030, 570497115729, 8110661588734, 116307527411482, 1680341334827514, 24435006625667338, 357366669614512168, 5253165510907071170
Offset: 0
a(1)=1 since there is only one way of partitioning {1,2,3,4} into two sets of equal sum, namely {1,4}, {2,3}.
- Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 0..835 (terms < 10^1000, first 251 terms from Alois P. Heinz)
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- L. Sallows, M. Gardner, R. K. Guy and D. E. Knuth, Serial isogons of 90 degrees, Math. Mag. 64 (1991), 315-324.
-
b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
`if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
end:
a:= n-> b(4*n, 4*n-1):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 30 2011
-
b[n_, i_] := b[n, i] = Module[{m = i*(i+1)/2}, If[n > m, 0, If[n == m, 1, b[Abs[n-i], i-1] + b[n+i, i-1]]]]; a[n_] := b[4*n, 4*n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 26 2013, translated from Alois P. Heinz's Maple program *)
A006718
Number of golygons of length 8n.
Original entry on oeis.org
1, 4, 112, 8432, 909288, 121106960, 18167084064, 2956370702688, 510696155882492, 92343039606440064, 17311893232788414400, 3342127071364266721200, 661066887819006986788620, 133456726466163517072371360
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 92.
See
A007219 for much more information about golygons.
-
p1[n_] := Product[x^k + 1, {k, 1, n - 1, 2}] // Expand; p2[n_] := Product[x^k + 1, {k, 1, n/2}] // Expand; c[n_] := Coefficient[p1[n], x, n^2/8] * Coefficient[p2[n], x, n (n/2 + 1)/8]; a[n_] := c[8*n]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Jul 24 2013, after Eric W. Weisstein *)
A107350
Number of isogons with a certain property.
Original entry on oeis.org
1, 4, 34, 346, 3965, 48396, 615966, 8082457, 108545916, 1484716135, 20612084010, 289688970195, 4113620233260, 58930127470164, 850641610106596, 12360278974175769, 180648953113093368, 2653875476976308643, 39167191622334514398, 580439539153823110678, 8633956582855204662785
Offset: 1
-
A107350 := proc(n) res := 1 ; for i from 0 to 4*n-1 do res := taylor(res*(1+x^(2*i+1)),x=0,8*n^2+1) ; od ; coeftayl(res,x=0,8*n^2)/2 ; end: for n from 1 to 25 do printf("%d, ",A107350(n)) ; od ; # R. J. Mathar, May 08 2007
-
a[n_] := SeriesCoefficient[Product[x^(2k - 1) + 1/x^(2k - 1), {k, 1, 4n}], {x, 0, 0}]/2;
Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 10 2023 *)
A292700
1/4 of the number of paths that are made of alternate vertical and horizontal 4*n consecutive prime (> 2 and < prime(4*n+2)) steps. (Each path begins and ends at the same point but is allowed to intersect itself.)
Original entry on oeis.org
0, 0, 0, 2, 4, 40, 756, 8466, 70664, 788240, 11086299, 114208465, 1536869680, 19129734630, 228346732944, 3059857239120, 38601632542723, 509554928113867, 6793745301391293, 92409631618813044, 1240139159309482820, 16995549322569645324, 236256012348427662180
Offset: 1
U, D, L and R express up, down, left and right.
n = 4:
3R, 5U, 7L, 11D, 13L, 17U, 19R, 23U, 29L, 31U, 37R, 41U, 43R, 47D, 53L, 59D.
3R, 5U, 7L, 11U, 13L, 17D, 19R, 23U, 29L, 31U, 37R, 41D, 43R, 47U, 53L, 59D.
A273089
Number of lattice n-gons with ordered sides 1, 2, 3, ..., n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 5, 6, 0, 0, 584, 882, 0, 0, 18026, 194741, 0, 0, 644414, 960834, 0, 0, 229910636
Offset: 1
a(8) = 3:
. . . . . ._._._. . . . . . . . . ._._._._._._._.
. . . . . | . . | . . . . . . . . | . . . . . . |
. . . . . | . ._| ._._._._._._._. | . . . . . . |
. . . . . | . | . | . . . . . . | | . . . . . . |
._._._._._| . | . | . . . . . | | . . . . . . |
| . . . . . . | . | . . . |\. . | | . . . . . . |
| . . . . . . | . | . . . | \ . | | ._._._. . . |
| . . . . . . | . | . . . | .\5 | | | . . | . ./.
| . . . . . . | . | ._._._| . .\| |_| . . | ./5 .
| . . . . . . | . | | . . . . . . . . . . | / . .
|_._._._._._._| . |_| . . . . . . . . . . |/. . .
.
a(11) = 5:
. . . . . . . . . . . ._._._._._._._._._. . . . . . . .
. . . . . . . . . . . .\. . . . . . . . | . . . . . . .
. . . . . . . . . . . . . \ . . . . . . | . . . . . . .
. . . . . . . ._._._. . . . .\. . . . . | . . . . . . .
. . . . . . . | . . | . . . . .10 . . . | . . . . . . .
. . . . . . ._| . . | . . . . . . \ . . | . . . . . . .
. . . . . . | . . . | . . . . . . . .\. | . . . . . . .
. . . . . . | . . . | . . . . . . . . | | . . . . . . .
. . . . . . | . . . . \ . . . . . . . | |_._._._._._._.
|\. . . . . | . . . . . 5 \ . . . . . | . . . . . . . |
| \ . . . . | . ._._._._._._. . . . . | . . . . . . . |
| .\. . . . | . | . . . . . . . . . . | . . . . . . . |
| . .\. . . | . | . . . . . . . . . . | . . . | \ . . |
| . . 10. . | . | . . . . . . . . . . | . . . | . 5 . |
| . . . \ . | . | . . . . . . . . . . | . . . | . . \ |
| . . . . \ | . | . . . . . . . . . . | ._._._| . . . .
| . . . . .\| . | . . . . . . . . . . | | . . . . . . .
|_._._._._._._._| . . . . . . . . . . |_| . . . . . . .
.
. ._._._. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. | . . | . . . . . . . . . . . . . . . . . ./| . . . . . . . .
._| . . | . . . . . . . . . . . . . . . . ./. | . . . . . . . .
| . . . | . . . . . . . . . . . . . . . . / . | . . . . . . . .
| . . . | . . . . . . . . . . . . . . . ./. . | . . . . . . . .
| . . . .\. . . . . . . . . . . . . . .10 . . | . . . . . . . .
| . . . . . 5 . . . . . . . . . . . . / . . . | . . . . . . . .
| . . . . . . .\. . . . . . . . . . / . . . . | . . . . . . . .
| . . . . . . . | . . . . . . . . ./. . . . . | . . . . . . . .
| . . . . . . . | . . . . . . . . | . . . . . |_._._._._._._._.
| . . . . . . . | . . . . . . . . | . . . . . . . . . . . . . |
| . . . . . . . | . . . . . . . . | . . . . . . . . . . . . . |
| . . . . . . . | . . . . . . . . | . . . . . . . . . . . . . |
| . . . . . . . |_._._._._._._. . | . . . . . . . . . . . . . |
.\. . . . . . . . . . . . . . | . | . . . | \ . . . . . . . . |
. \ . . . . . . . . . . . . . | . | . . . | . .5. . . . . . . |
. . \ . . . . . . . . . . . . | . | . . . | . . .\._._._._._._|
. . . \ . . . . . . . . . . . | . | ._._._| . . . . . . . . . .
. . . 10. . . . . . . . . . . | . | | . . . . . . . . . . . . .
. . . . \ . . . . . . . . . . | . |_| . . . . . . . . . . . . .
. . . . . \ . . . . . . . . . |
. . . . . .\._._._._._._._._._|
.
. . . . . . . . . . . . . . . .
|\. . . . . . . . . . . . . . .
| .\. . . . . . . . . . . . . .
| . \ . . . . . . . . . . . . .
| . . \ . . . . . . . . . . . .
| . . 10. . . . . . . . . . . .
| . . . .\. . . . . . . . . . .
| . . . . \ . . . . . . . . . .
| . . . . . \_._._._._._._._._.
| ._._._. . . . . . . . . . . |
| | . . | . . . . . . . . . . |
|_| . . | . . ./| . . . . . . |
. . . . | . 5 . | . . . . . . |
. . . . |/. . . | . . . . . . |
. . . . . . . . | . . . . . . |
. . . . . . . . | . . . . . . |
. . . . . . . . |_._._._._._._|
. - _Hugo Pfoertner_, Mar 20 2020
- Stefan Kohl, Lattice n-gons with ordered side lengths 1,2,3,…,n, Answer on MathOverflow, May 4, 2016.
- MathOverflow, Lattice n-gons with ordered side lengths 1,2,3,...,n
- Giovanni Resta, Examples of n-gons with minimal and maximal area
- L. Sallows, M. Gardner, R. K. Guy and D. E. Knuth, Serial isogons of 90 degrees, Math. Mag. 64 (1991), 315-324.
- Wikipedia, Golygon
Typo in a(15) corrected and a(17)-a(27) added by
Giovanni Resta, Mar 26 2020
Showing 1-5 of 5 results.
Comments