cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060005 Number of ways of partitioning the integers {1,2,..,4n} into two (unordered) sets such that the sums of parts are equal in both sets (parts in either set will add up to (4n)*(4n+1)/4). Number of solutions to {1 +- 2 +- 3 +- ... +- 4n=0}.

Original entry on oeis.org

1, 1, 7, 62, 657, 7636, 93846, 1199892, 15796439, 212681976, 2915017360, 40536016030, 570497115729, 8110661588734, 116307527411482, 1680341334827514, 24435006625667338, 357366669614512168, 5253165510907071170
Offset: 0

Views

Author

Roland Bacher, Mar 15 2001

Keywords

Examples

			a(1)=1 since there is only one way of partitioning {1,2,3,4} into two sets of equal sum, namely {1,4}, {2,3}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
        end:
    a:= n-> b(4*n, 4*n-1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 30 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{m = i*(i+1)/2}, If[n > m, 0, If[n == m, 1, b[Abs[n-i], i-1] + b[n+i, i-1]]]]; a[n_] := b[4*n, 4*n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 26 2013, translated from Alois P. Heinz's Maple program *)

Formula

a(0)=1 and a(n) is half the coefficient of q^0 in product((q^(-k)+q^k), k=1..4*n) for n >= 1.
For n>=1, a(n) = (1/Pi)*16^n*J(4n) where J(n) = integral(t=0, Pi/2, cos(t)cos(2t)...cos(nt)dt). - Benoit Cloitre, Sep 24 2006

Extensions

More terms from Alois P. Heinz, Oct 30 2011

A007219 Number of golygons of order 8n (or serial isogons of order 8n).

Original entry on oeis.org

1, 28, 2108, 227322, 30276740, 4541771016, 739092675672, 127674038970623, 23085759901610016, 4327973308197103600, 835531767841066680300, 165266721954751746697155, 33364181616540879268092840
Offset: 1

Views

Author

Keywords

Comments

A golygon of order N is a closed path along the streets of the Manhattan grid with successive edge lengths of 1,2,3,...,N (returning to the starting point after the edge of length N), and which makes a 90-degree turn (left or right) after each edge.
It is known that the order N must be a multiple of 8.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 92.

Crossrefs

See also A006718.

Programs

  • Mathematica
    p1[n_] := Product[x^k + 1, {k, 1, n - 1, 2}] // Expand; p2[n_] := Product[x^k + 1, {k, 1, n/2}] // Expand; c[n_] := Coefficient[p1[n], x, n^2/8] * Coefficient[p2[n], x, n (n/2 + 1)/8]; a[n_] := c[8*n]/4; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Jul 24 2013, after Eric W. Weisstein *)

Formula

a(n) = A006718(n)/4. - Charles R Greathouse IV, Apr 29 2012
a(n) ~ 3*2^(8*n-6)/(Pi*n^2*(4*n+1)). - Vaclav Kotesovec, Dec 09 2013

Extensions

Two more terms from N. J. A. Sloane (from the reference), May 23 2005
Showing 1-2 of 2 results.