A387019 Cubefree numbers organized based on their prime factorization represented in base three.
1, 2, 4, 3, 6, 12, 9, 18, 36, 5, 10, 20, 15, 30, 60, 45, 90, 180, 25, 50, 100, 75, 150, 300, 225, 450, 900, 7, 14, 28, 21, 42, 84, 63, 126, 252, 35, 70, 140, 105, 210, 420, 315, 630, 1260, 175, 350, 700, 525, 1050, 2100, 1575, 3150, 6300, 49, 98, 196, 147, 294, 588, 441, 882, 1764
Offset: 0
Examples
a(11) = a(102_3) and so we get prime(3)^1 * prime(2)^0 * prime(1)^2 = 5^1 * 3^0 * 2^2 = 5 * 1 * 4 = 20. a(33) = a(1020_3) and so we get prime(4)^1 * prime(3)^0 * prime(2)^2 * prime(1)^0 = 7^1 * 5^0 * 3^2 * 2^0 = 7 * 1 * 9 * 1 = 63.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
A387019[n_] := Times @@ (Prime[Range[Length[#], 1, -1]]^#) & [IntegerDigits[n, 3]]; Array[A387019, 100, 0] (* Paolo Xausa, Sep 02 2025 *)
-
PARI
a(n) = {my(d = digits(n, 3), pr = primes(#d)); prod(i = 1, #d, pr[#d + 1 - i]^d[i])} \\ David A. Corneth, Aug 13 2025
Formula
a(n) = Product_{k=1..m} prime(k)^d(k) where d(m)d(m-1)...d(2)d(1) is the ternary representation of n. - David A. Corneth, Aug 19 2025
Extensions
a(45) corrected and more terms from David A. Corneth, Aug 13 2025
Comments