cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A063865 Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = 0.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 8, 14, 0, 0, 70, 124, 0, 0, 722, 1314, 0, 0, 8220, 15272, 0, 0, 99820, 187692, 0, 0, 1265204, 2399784, 0, 0, 16547220, 31592878, 0, 0, 221653776, 425363952, 0, 0, 3025553180, 5830034720, 0, 0, 41931984034, 81072032060, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, suggested by J. H. Conway, Aug 27 2001

Keywords

Comments

Number of sum partitions of the half of the n-th-triangular number by distinct numbers in the range 1 to n. Example: a(7)=8 since triangular(7)=28 and 14 = 2+3+4+5 = 1+3+4+6 = 1+2+5+6 = 3+5+6 = 7+1+2+4 = 7+3+4 = 7+2+5 = 7+1+6. - Hieronymus Fischer, Oct 20 2010
The asymptotic formula below was stated as a conjecture by Andrica & Tomescu in 2002 and proved by B. D. Sullivan in 2013. See his paper and H.-K. Hwang's review MR 2003j:05005 of the JIS paper. - Jonathan Sondow, Nov 11 2013
a(n) is the number of subsets of {1..n} whose sum is equal to the sum of their complement. See example below. - Gus Wiseman, Jul 04 2019

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
For example, the a(0) = 1 through a(8) = 14 subsets (empty columns not shown) are:
  {}  {3}    {1,4}  {1,6,7}    {3,7,8}
      {1,2}  {2,3}  {2,5,7}    {4,6,8}
                    {3,4,7}    {5,6,7}
                    {3,5,6}    {1,2,7,8}
                    {1,2,4,7}  {1,3,6,8}
                    {1,2,5,6}  {1,4,5,8}
                    {1,3,4,6}  {1,4,6,7}
                    {2,3,4,5}  {2,3,5,8}
                               {2,3,6,7}
                               {2,4,5,7}
                               {3,4,5,6}
                               {1,2,3,4,8}
                               {1,2,3,5,7}
                               {1,2,4,5,6}
(End)
		

Crossrefs

"Decimations": A060468 = 2*A060005, A123117 = 2*A104456.
Analogous sequences for sums of squares and cubes are A158092, A158118, see also A019568. - Pietro Majer, Mar 15 2009

Programs

  • Maple
    M:=400; t1:=1; lprint(0,1); for n from 1 to M do t1:=expand(t1*(x^n+1/x^n)); lprint(n, coeff(t1,x,0)); od: # N. J. A. Sloane, Jul 07 2008
  • Mathematica
    f[n_, s_] := f[n, s]=Which[n==0, If[s==0, 1, 0], Abs[s]>(n*(n+1))/2, 0, True, f[ n-1, s-n]+f[n-1, s+n]]; a[n_] := f[n, 0]
    nmax = 50; d = {1}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n];
      , {n, nmax}];
    a1 (* Ray Chandler, Mar 13 2014 *)
  • PARI
    a(n)=my(x='x); polcoeff(prod(k=1,n,x^k+x^-k)+O(x),0) \\ Charles R Greathouse IV, May 18 2015
    
  • PARI
    a(n)=0^n+floor(prod(k=1,n,2^(n*k)+2^(-n*k)))%(2^n) \\ Tani Akinari, Mar 09 2016

Formula

Asymptotic formula: a(n) ~ sqrt(6/Pi)*n^(-3/2)*2^n for n = 0 or 3 (mod 4) as n approaches infinity.
a(n) = 0 unless n == 0 or 3 (mod 4).
a(n) = constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k). - N. J. A. Sloane, Jul 07 2008
If n = 0 or 3 (mod 4) then a(n) = coefficient of x^(n(n+1)/4) in Product_{k=1..n} (1+x^k). - D. Andrica and I. Tomescu.
a(n) = 2*A058377(n) for any n > 0. - Rémy Sigrist, Oct 11 2017

Extensions

More terms from Dean Hickerson, Aug 28 2001
Corrected and edited by Steven Finch, Feb 01 2009

A104456 Number of ways of partitioning the integers {1,2,..,4n-1} into two unordered sets such that the sums of parts are equal in both sets (parts in one of the sets hence sum up to n*(4n-1)). Number of solutions to {1 +- 2 +- 3+ ... +- 4n-1 = 0}.

Original entry on oeis.org

1, 4, 35, 361, 4110, 49910, 632602, 8273610, 110826888, 1512776590, 20965992017, 294245741167, 4173319332859, 59723919552183, 861331863890066, 12505857230438737, 182650875111521033, 2681644149792639400, 39555354718945873299, 585903163431438401072
Offset: 1

Views

Author

Yiu Tung Poon (ytpoon(AT)iastate.edu) and Chun Chor Litwin Cheng (cccheng(AT)ied.edu.hk), Mar 08 2005

Keywords

Examples

			a(2) = 4 since there are 4 ways of partitioning {1,2,3,4,5,6,7} into two sets of equal sum, namely {{1,2,5,6}, {3,4,7}}, {{1,3,4,6}, {2,5,7}}, {{2,3,4,5}, {1,6,7}}, {{1,2,4,7}, {3,5,6}}.
G.f. = x + 4*x^2 + 35*x^3 + 361*x^4 + 4110*x^5 + 49910*x^6 + ...
		

Crossrefs

Cf. A060005.

Programs

  • Maple
    b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
          `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
        end:
    a:= n-> b(4*n-1, 4*n-2):
    seq(a(n), n=1..30); # Alois P. Heinz, Nov 01 2011
  • Mathematica
    Table[CoefficientList[Product[1 + x^j, {j, 1, 4n - 1}], x][[n*(4n - 1) + 1]]/2, {n, 20}]

Formula

a(n) = A058377(4n-1). - N. J. A. Sloane, Jan 24 2006
a(n) is half the coefficient of q^(n*(4n - 1)) in the product('1 + x^j', 'j'=1..4*n-1), for n >= 1. - N. J. A. Sloane, Feb 24 2006
a(n) = (1/Pi)*2^(4n-1)*J(4n-1) where J(n) = integral(t=0, Pi/2, cos(t) * cos(2t) * ... * cos(nt)dt), n>=1. - Benoit Cloitre, Sep 24 2006
a(n) = A123117(n)/2. - N. J. A. Sloane, Jan 09 2009
Showing 1-2 of 2 results.