1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1, 1;
1, 1, 1, 2, 1, 1, 1;
1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1;
1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1;
1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1;
...
Row n = 4 counts the following binary words, where k = sum of positions of zeros:
1111 0111 1011 0011 0101 0110 0001 0010 0100 1000 0000
1101 1110 1001 1010 1100
Row n = 5 counts the following strict partitions of k with all parts <= n (0 is the empty partition):
0 1 2 3 4 5 42 43 53 54 532 542 543 5431 5432 54321
21 31 32 51 52 431 432 541 5321 5421
41 321 421 521 531 4321
Comments