A070937 Number of times maximal coefficient (A025591) appears in Product_{k<=n} (x^k + 1), i.e., number of times highest value appears in n-th row of A053632 or n-th column of A070936.
1, 2, 4, 1, 5, 6, 4, 5, 1, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1
Offset: 0
Examples
a(4)=5 since Product_{k<=4} (x^k + 1) = 1 + x + x^2 + 2x^3 + 2x^4 + 2x^5 + 2x^6 + 2x^7 + x^8 + x^9 + x^10 and 2 appears as a coefficient 5 times.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1).
Formula
If n mod 4 = 0 or 3 then a(n) odd, otherwise a(n) even.
For n > 9: a(n) = A014695(n).
From Chai Wah Wu, Apr 10 2021: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 12.
G.f.: (2*x^12 - 2*x^11 + 6*x^10 - 4*x^9 + 6*x^8 - 2*x^7 - 2*x^6 + 2*x^5 - 6*x^4 + 2*x^3 - 3*x^2 - x - 1)/((x - 1)*(x^2 + 1)). (End)
Comments