A348165
Number of solutions to +-1^2 +- 2^2 +- 3^2 +- ... +- n^2 = n.
Original entry on oeis.org
1, 1, 0, 0, 1, 2, 0, 0, 2, 4, 0, 0, 19, 29, 0, 0, 127, 208, 0, 0, 1121, 1917, 0, 0, 10479, 19360, 0, 0, 113213, 204121, 0, 0, 1290968, 2363982, 0, 0, 15303057, 28397538, 0, 0, 187446097, 351339307, 0, 0, 2355979330, 4455357992, 0, 0, 30360404500, 57630025172
Offset: 0
-
b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
b(abs(n-i^2), i-1)+b(n+i^2, i-1))))((1+(3+2*i)*i)*i/6)
end:
a:= n-> `if`(irem(n, 4)>1, 0, b(n$2)):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 28 2022
-
b[n_, i_] := b[n, i] = Function[m, If[n > m, 0, If[n == m, 1, b[Abs[n - i^2], i - 1] + b[n + i^2, i - 1]]]][(1 + (3 + 2*i)*i)*i/6];
a[n_] := If[Mod[n, 4] > 1, 0, b[n, n]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)
-
from functools import lru_cache
@lru_cache(maxsize=None)
def b(n, i):
if n > i*(i+1)*(2*i+1)//6: return 0
if i == 0: return 1
return b(n+i**2, i-1) + b(abs(n-i**2), i-1)
def a(n): return b(n, n)
print([a(n) for n in range(50)]) # Michael S. Branicky, Jan 28 2022
A348892
Number of solutions to +-1^3 +- 2^3 +- 3^3 +- ... +- n^3 = n.
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 83, 69, 0, 0, 353, 414, 0, 0, 7800, 12496, 0, 0, 48162, 56870, 0, 0, 733392, 1253467, 0, 0, 4892337, 10022277, 0, 0, 45859303, 149422926, 0, 0, 623257759, 1339056922, 0, 0, 7453502893, 13446831198
Offset: 0
-
from functools import lru_cache
@lru_cache(maxsize=None)
def b(n, i):
if n > (i*(i+1)//2)**2: return 0
if i == 0: return 1
return b(n+i**3, i-1) + b(abs(n-i**3), i-1)
def a(n): return b(n, n)
print([a(n) for n in range(54)]) # Michael S. Branicky, Jan 28 2022
A368243
Number of solutions to +- 1^2 +- 2^2 +- 3^2 +- ... +- n^2 = n^2.
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 5, 15, 0, 0, 127, 184, 0, 0, 819, 1382, 0, 0, 9441, 18176, 0, 0, 96562, 172371, 0, 0, 1192142, 2252342, 0, 0, 13869696, 25741462, 0, 0, 177056022, 334176492, 0, 0, 2207693292, 4182801839, 0, 0, 28966597122, 55125154468
Offset: 0
-
b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
b(abs(n-i^2), i-1) +b(n+i^2, i-1))))((1+(3+2*i)*i)*i/6)
end:
a:= n-> `if`(irem(n, 4)>1, 0, b(n^2, n)):
seq(a(n), n=0..49); # Alois P. Heinz, Jan 22 2024
A368845
Number of solutions to +- 1^3 +- 2^3 +- 3^3 +- ... +- n^3 = n^3.
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 4, 0, 0, 8, 187, 0, 0, 831, 1086, 0, 0, 7127, 3983, 0, 0, 20086, 120445, 0, 0, 674006, 1056938, 0, 0, 6983613, 5964500, 0, 0, 40031490, 142694311, 0, 0, 853687222, 1622335105, 0, 0, 10288998770, 12509111104
Offset: 0
-
b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
b(abs(n-i^3), i-1) +b(n+i^3, i-1))))((i*(i+1)/2)^2)
end:
a:= n-> `if`(irem(n, 4)>1, 0, b(n^3, n)):
seq(a(n), n=0..53); # Alois P. Heinz, Jan 22 2024
A369390
a(n) = [x^prime(n)] Product_{k=1..n} (x^prime(k) + 1 + 1/x^prime(k)).
Original entry on oeis.org
1, 1, 2, 4, 6, 13, 31, 77, 188, 449, 1191, 3014, 7920, 21498, 57833, 154073, 412733, 1141274, 3106771, 8576977, 24015471, 66489615, 185886699, 517837152, 1435964205, 4034697191, 11438332340, 32395341851, 92396549863, 263233759500, 736127855014, 2093027604453
Offset: 1
-
s:= proc(n) s(n):= `if`(n<1, 0, ithprime(n)+s(n-1)) end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=0, 1,
b(n, i-1)+b(n+ithprime(i), i-1)+b(abs(n-ithprime(i)), i-1)))
end:
a:= n-> b(ithprime(n), n):
seq(a(n), n=1..40); # Alois P. Heinz, Jan 22 2024
-
Table[Coefficient[Product[(x^Prime[k] + 1 + 1/x^Prime[k]), {k, 1, n}], x, Prime[n]], {n, 1, 32}]
A350695
Number of solutions to +-2 +- 3 +- 5 +- 7 +- ... +- prime(n-1) = n.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, 4, 5, 9, 15, 26, 45, 77, 137, 243, 434, 774, 1408, 2554, 4667, 8627, 15927, 29559, 54867, 101688, 189425, 355315, 668598, 1264180, 2395462, 4506221, 8507311, 16084405, 30545142, 57898862, 110199367, 209957460, 400430494, 765333684
Offset: 0
-
Table[SeriesCoefficient[Product[x^Prime[k] + 1/x^Prime[k], {k, n - 1}], {x, 0, n}], {n, 0, 40}] (* Stefano Spezia, Jan 30 2022 *)
-
from sympy import sieve, primerange
from functools import cache
@cache
def b(n, i):
maxsum = 0 if i < 2 else sum(p for p in primerange(2, sieve[i-1]+1))
if n > maxsum: return 0
if i < 2: return 1
return b(n+sieve[i-1], i-1) + b(abs(n-sieve[i-1]), i-1)
def a(n): return b(n, n)
print([a(n) for n in range(41)]) # Michael S. Branicky, Jan 29 2022
A351002
Number of solutions to +-1 +- 3 +- 6 +- 10 +- ... +- n*(n + 1)/2 = n.
Original entry on oeis.org
1, 1, 1, 0, 0, 1, 3, 0, 4, 3, 9, 0, 27, 43, 71, 0, 190, 318, 604, 0, 1846, 3127, 5664, 0, 19048, 34065, 62045, 0, 205713, 378243, 705836, 0, 2403370, 4434940, 8276125, 0, 28980680, 54167797, 101541048, 0, 358095372, 674776903, 1274888645, 0, 4551828850, 8612421500
Offset: 0
-
from functools import lru_cache
@lru_cache(maxsize=None)
def b(n, i):
if n > i*(i+1)*(i+2)//6: return 0
if i == 0: return 1
return b(n+i*(i+1)//2, i-1) + b(abs(n-i*(i+1)//2), i-1)
def a(n): return b(n, n)
print([a(n) for n in range(50)]) # Michael S. Branicky, Jan 29 2022
A368206
a(n) = [x^n] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 8, 13, 0, 0, 272, 0, 0, 0, 5400, 8915, 0, 0, 30433, 1590, 0, 0, 68638, 73470, 0, 0, 90808, 6638072, 0, 0, 127356, 319803, 0, 0, 20130146, 559282596, 0, 0, 1507066936, 3820244957, 0, 0
Offset: 0
-
b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
end:
a:= n-> `if`(irem(n, 4)>1, 0, b(n, n)):
seq(a(n), n=0..43); # Alois P. Heinz, Jan 25 2024
A367416
Triangle read by rows: T(n,k) = number of solutions to +- 1^k +- 2^k +- 3^k +- ... +- n^k is a k-th power, n >= 2.
Original entry on oeis.org
4, 8, 1, 16, 1, 32, 0, 2, 64, 6, 128, 8, 256, 16, 4, 512, 26, 1024, 17, 10, 2048, 67, 4, 3, 4096, 100, 10, 8192, 137, 34, 6, 16384, 426, 28, 1, 32768, 661, 96, 6, 65536, 1351, 146, 16, 8, 131072, 2637, 230, 15, 262144, 3831, 258, 40, 524288, 8095, 1130, 50
Offset: 2
Triangle begins:
k = 1 2 3 4 5
n= 2: 4;
n= 3: 8, 1;
n= 4: 16, 1;
n= 5: 32, 0, 2;
n= 6: 64, 6;
n= 7: 128, 8;
n= 8: 256, 16, 4;
n= 9: 512, 26;
n=10: 1024, 17, 10;
n=11: 2048, 67, 4, 3;
n=12: 4096, 100, 10;
n=13: 8192, 137, 34, 6;
n=14: 16384, 426, 28, 1;
n=15: 32768, 661, 96, 6;
n=16: 65536, 1351, 146, 16, 8;
n=17: 131072, 2637, 230, 15;
n=18: 262144, 3831, 258, 40;
n=19: 524288, 8095, 1130, 50;
n=20: 1048576, 15241, 854, 77, 6;
...
The T(6,2) = 6 solutions are:
- 1^2 - 2^2 + 3^2 - 4^2 + 5^2 + 6^2 = 49 = 7^2,
- 1^2 - 2^2 + 3^2 + 4^2 + 5^2 - 6^2 = 9 = 3^2,
- 1^2 - 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 81 = 9^2,
+ 1^2 - 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 1 = 1^2,
+ 1^2 + 2^2 - 3^2 + 4^2 + 5^2 - 6^2 = 1 = 1^2,
+ 1^2 + 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 9 = 3^2.
-
f(k,u)=my(x=0,v=vector(#u));for(i=1,#u,u[i]=if(u[i]==0,-1,1);v[i]=i^k);u*v~
is(k,u)=my(x=f(k,u));ispower(x,k)
T(n,k)=my(u=vector(n,i,[0,1]),nbsol=0);if(k%2==1,u[1]=[1,1]);forvec(X=u,if(is(k,X),nbsol++));if(k%2==1,nbsol*=2);nbsol
A367736
a(0) = 1; for n > 0, a(n) is the coefficient of x^a(n-1) in the expansion of Product_{k=0..n-1} (x^a(k) + 1 + 1/x^a(k)).
Original entry on oeis.org
1, 1, 2, 4, 6, 11, 19, 32, 58, 97, 163, 290, 501, 856, 1483, 2561, 4424, 7652, 13273, 23024, 39784, 69001, 119614, 207042, 358746, 621117, 1075865, 1864050, 3227724, 5590548, 9682402, 16770033, 29049713, 50310453, 87142439, 150939346, 261424583, 452810957
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Coefficient[Product[x^a[k] + 1 + 1/x^a[k], {k, 0, n - 1}], x, a[n - 1]]; Table[a[n], {n, 0, 28}]
-
from itertools import islice
from collections import Counter
def A367736_gen(): # generator of terms
c, b = {0:1}, 1
while True:
yield b
d = Counter(c)
for k in c:
e = c[k]
d[k+b] += e
d[k-b] += e
c = d
b = c[b]
A367736_list = list(islice(A367736_gen(),20)) # Chai Wah Wu, Feb 05 2024
Showing 1-10 of 14 results.
Comments