cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A348892 Number of solutions to +-1^3 +- 2^3 +- 3^3 +- ... +- n^3 = n.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 83, 69, 0, 0, 353, 414, 0, 0, 7800, 12496, 0, 0, 48162, 56870, 0, 0, 733392, 1253467, 0, 0, 4892337, 10022277, 0, 0, 45859303, 149422926, 0, 0, 623257759, 1339056922, 0, 0, 7453502893, 13446831198
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2022

Keywords

Crossrefs

Programs

  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def b(n, i):
        if n > (i*(i+1)//2)**2: return 0
        if i == 0: return 1
        return b(n+i**3, i-1) + b(abs(n-i**3), i-1)
    def a(n): return b(n, n)
    print([a(n) for n in range(54)]) # Michael S. Branicky, Jan 28 2022

Formula

a(n) = [x^n] Product_{k=1..n} (x^(k^3) + 1/x^(k^3)).

A368243 Number of solutions to +- 1^2 +- 2^2 +- 3^2 +- ... +- n^2 = n^2.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 5, 15, 0, 0, 127, 184, 0, 0, 819, 1382, 0, 0, 9441, 18176, 0, 0, 96562, 172371, 0, 0, 1192142, 2252342, 0, 0, 13869696, 25741462, 0, 0, 177056022, 334176492, 0, 0, 2207693292, 4182801839, 0, 0, 28966597122, 55125154468
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          b(abs(n-i^2), i-1) +b(n+i^2, i-1))))((1+(3+2*i)*i)*i/6)
        end:
    a:= n-> `if`(irem(n, 4)>1, 0, b(n^2, n)):
    seq(a(n), n=0..49);  # Alois P. Heinz, Jan 22 2024

Formula

a(n) = [x^(n^2)] Product_{k=1..n} (x^(k^2) + 1/x^(k^2)).

A369433 a(n) = [x^n] Product_{k=1..n} (x^(k^2) + 1 + 1/x^(k^2)).

Original entry on oeis.org

1, 1, 0, 1, 3, 5, 7, 13, 35, 82, 168, 409, 1035, 2540, 6262, 16068, 41474, 107259, 279256, 736359, 1953946, 5205746, 13938670, 37567522, 101675407, 276158642, 752927255, 2060852216, 5658658210, 15582628517, 43032891276, 119166025289, 330808837377
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Product[(x^(k^2) + 1 + 1/x^(k^2)), {k, 1, n}], x, n], {n, 0, 32}]

A351002 Number of solutions to +-1 +- 3 +- 6 +- 10 +- ... +- n*(n + 1)/2 = n.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 3, 0, 4, 3, 9, 0, 27, 43, 71, 0, 190, 318, 604, 0, 1846, 3127, 5664, 0, 19048, 34065, 62045, 0, 205713, 378243, 705836, 0, 2403370, 4434940, 8276125, 0, 28980680, 54167797, 101541048, 0, 358095372, 674776903, 1274888645, 0, 4551828850, 8612421500
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2022

Keywords

Crossrefs

Programs

  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def b(n, i):
        if n > i*(i+1)*(i+2)//6: return 0
        if i == 0: return 1
        return b(n+i*(i+1)//2, i-1) + b(abs(n-i*(i+1)//2), i-1)
    def a(n): return b(n, n)
    print([a(n) for n in range(50)]) # Michael S. Branicky, Jan 29 2022

Formula

a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1/x^(k*(k+1)/2)).

A369730 Number of solutions to +- 1^2 +- 2^2 +- 3^2 +- ... +- n^2 = 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 0, 0, 5, 2, 0, 0, 13, 43, 0, 0, 193, 274, 0, 0, 1552, 3245, 0, 0, 18628, 31048, 0, 0, 188536, 372710, 0, 0, 2376996, 4197425, 0, 0, 27465147, 53072709, 0, 0, 351329160, 650125358, 0, 0, 4398613111, 8429649875, 0, 0, 57629346805, 108986428106
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)*(2*i+1)/6, 0,
          `if`(i=0, 1, b(n+i^2, i-1)+b(abs(n-i^2), i-1)))
        end:
    a:=n-> b(1, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 30 2024
  • Mathematica
    Table[Coefficient[Product[(x^(k^2) + 1/x^(k^2)), {k, 1, n}], x, 1], {n, 0, 48}]

Formula

a(n) = [x^1] Product_{k=1..n} (x^(k^2) + 1/x^(k^2)).

A368206 a(n) = [x^n] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 8, 13, 0, 0, 272, 0, 0, 0, 5400, 8915, 0, 0, 30433, 1590, 0, 0, 68638, 73470, 0, 0, 90808, 6638072, 0, 0, 127356, 319803, 0, 0, 20130146, 559282596, 0, 0, 1507066936, 3820244957, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
        end:
    a:= n-> `if`(irem(n, 4)>1, 0, b(n, n)):
    seq(a(n), n=0..43);  # Alois P. Heinz, Jan 25 2024

Extensions

a(46)-a(59) from Alois P. Heinz, Jan 25 2024
Showing 1-6 of 6 results.