cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A348165 Number of solutions to +-1^2 +- 2^2 +- 3^2 +- ... +- n^2 = n.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 2, 4, 0, 0, 19, 29, 0, 0, 127, 208, 0, 0, 1121, 1917, 0, 0, 10479, 19360, 0, 0, 113213, 204121, 0, 0, 1290968, 2363982, 0, 0, 15303057, 28397538, 0, 0, 187446097, 351339307, 0, 0, 2355979330, 4455357992, 0, 0, 30360404500, 57630025172
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2022

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          b(abs(n-i^2), i-1)+b(n+i^2, i-1))))((1+(3+2*i)*i)*i/6)
        end:
    a:= n-> `if`(irem(n, 4)>1, 0, b(n$2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 28 2022
  • Mathematica
    b[n_, i_] := b[n, i] = Function[m, If[n > m, 0, If[n == m, 1, b[Abs[n - i^2], i - 1] + b[n + i^2, i - 1]]]][(1 + (3 + 2*i)*i)*i/6];
    a[n_] := If[Mod[n, 4] > 1, 0, b[n, n]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 26 2022, after Alois P. Heinz *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def b(n, i):
        if n > i*(i+1)*(2*i+1)//6: return 0
        if i == 0: return 1
        return b(n+i**2, i-1) + b(abs(n-i**2), i-1)
    def a(n): return b(n, n)
    print([a(n) for n in range(50)]) # Michael S. Branicky, Jan 28 2022

Formula

a(n) = [x^n] Product_{k=1..n} (x^(k^2) + 1/x^(k^2)).

A368845 Number of solutions to +- 1^3 +- 2^3 +- 3^3 +- ... +- n^3 = n^3.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 4, 0, 0, 8, 187, 0, 0, 831, 1086, 0, 0, 7127, 3983, 0, 0, 20086, 120445, 0, 0, 674006, 1056938, 0, 0, 6983613, 5964500, 0, 0, 40031490, 142694311, 0, 0, 853687222, 1622335105, 0, 0, 10288998770, 12509111104
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          b(abs(n-i^3), i-1) +b(n+i^3, i-1))))((i*(i+1)/2)^2)
        end:
    a:= n-> `if`(irem(n, 4)>1, 0, b(n^3, n)):
    seq(a(n), n=0..53);  # Alois P. Heinz, Jan 22 2024

Formula

a(n) = [x^(n^3)] Product_{k=1..n} (x^(k^3) + 1/x^(k^3)).

A369437 a(n) = [x^n] Product_{k=1..n} (x^(k^3) + 1 + 1/x^(k^3)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 4, 6, 15, 24, 40, 69, 138, 396, 1028, 3062, 8269, 21680, 50955, 115457, 262239, 631393, 1666438, 4558051, 12913587, 35530351, 95825467, 246943968, 628040166, 1607703060, 4228528070, 11485131123, 31616483271, 88141192570, 243487667830
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>(i*(i+1)/2)^2, 0,
         `if`(i=0, 1, b(n, i-1)+b(n+i^3, i-1)+b(abs(n-i^3), i-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    Table[Coefficient[Product[(x^(k^3) + 1 + 1/x^(k^3)), {k, 1, n}], x, n], {n, 0, 34}]

A369731 Number of solutions to +- 1^3 +- 2^3 +- 3^3 +- ... +- n^3 = 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 1, 0, 0, 6, 1, 0, 0, 12, 344, 0, 0, 1140, 713, 0, 0, 4384, 5956, 0, 0, 48774, 197767, 0, 0, 1147500, 1097442, 0, 0, 6499466, 11844316, 0, 0, 85185855, 261696060, 0, 0, 1649383741, 2039067290, 0, 0, 13301106607, 25603704324
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Product[(x^(k^3) + 1/x^(k^3)), {k, 1, n}], x, 1], {n, 0, 50}]

Formula

a(n) = [x^1] Product_{k=1..n} (x^(k^3) + 1/x^(k^3)).

A368206 a(n) = [x^n] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 8, 13, 0, 0, 272, 0, 0, 0, 5400, 8915, 0, 0, 30433, 1590, 0, 0, 68638, 73470, 0, 0, 90808, 6638072, 0, 0, 127356, 319803, 0, 0, 20130146, 559282596, 0, 0, 1507066936, 3820244957, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
        end:
    a:= n-> `if`(irem(n, 4)>1, 0, b(n, n)):
    seq(a(n), n=0..43);  # Alois P. Heinz, Jan 25 2024

Extensions

a(46)-a(59) from Alois P. Heinz, Jan 25 2024
Showing 1-5 of 5 results.