cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369734 Number of solutions to 1^2*k_1 + 2^2*k_2 + ... + n^2*k_n = 1, where k_i are from {-1,0,1}, i=1..n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 8, 17, 35, 79, 177, 409, 995, 2475, 6336, 16078, 41401, 107304, 279550, 736032, 1950000, 5199850, 13950852, 37576658, 101670863, 276228026, 753114256, 2060995699, 5658663542, 15583477334, 43039552072, 119179072495, 330836308272, 920537185436
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Product[(x^(k^2) + 1 + 1/x^(k^2)), {k, 1, n}], x, 1], {n, 0, 32}]

Formula

a(n) = [x^1] Product_{k=1..n} (x^(k^2) + 1 + 1/x^(k^2)).

A368478 a(n) = [x^n] Product_{k=1..n} (x^(k^4) + 1 + 1/x^(k^4)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 22, 88, 236, 568, 1147, 1999, 3030, 4333, 4793, 5620, 4628, 9353, 40048, 312436, 1638550, 7894061, 30866741, 105342660, 323671449, 863529149, 2152428536, 4750103818, 9796453345, 18572505806, 32181800057, 55712628236
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1, b(n, i-1)+
          b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);  # Alois P. Heinz, Jan 25 2024

Extensions

a(34)-a(38) from Alois P. Heinz, Jan 25 2024

A369495 a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 11, 25, 56, 129, 313, 748, 1831, 4584, 11581, 29555, 76398, 199191, 522746, 1382158, 3676072, 9828631, 26412174, 71310248, 193346941, 526302232, 1437895915, 3941671019, 10839118898, 29893768219, 82671240995, 229213877639, 637049969282
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
         `if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1)+b(n, i-1)+
            b(n+i*(i+1)/2, i-1))))((2+(3+i)*i)*i/6)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Jan 24 2024
  • Mathematica
    Table[Coefficient[Product[x^(k (k + 1)/2) + 1 + 1/x^(k (k + 1)/2), {k, 1, n}], x, n], {n, 0, 32}]
Showing 1-3 of 3 results.