cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060517 Triangle T(n,k) of series-reduced (or homeomorphically irreducible) graphs with loops on n labeled nodes and with k edges, k=0..binomial(n+1,2).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 1, 3, 6, 6, 6, 3, 1, 1, 6, 15, 34, 58, 60, 60, 50, 33, 10, 1, 1, 10, 35, 120, 265, 475, 820, 1200, 1615, 1860, 1693, 1060, 425, 105, 15, 1, 1, 15, 75, 330, 990, 2691, 6326, 13170, 26205, 48055, 79206, 112863, 133535, 124680, 88890, 47874
Offset: 0

Views

Author

Vladeta Jovovic, Mar 24 2001

Keywords

Examples

			[1], [1, 0], [1, 1, 2, 1], [1, 3, 6, 6, 6, 3, 1], [1, 6, 15, 34, 58, 60, 60, 50, 33, 10, 1], [1, 10, 35, 120, 265, 475, 820, 1200, 1615, 1860, 1693, 1060, 425, 105, 15, 1], [1, 15, 75, 330, 990, 2691, 6326, 13170, 26205, 48055, 79206, 112863, 133535, 124680, 88890, 47874, 19443, 5925, 1330, 210, 21, 1], ...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums: A060516, A003514, A060514.

Formula

E.g.f.: (1 + x * y)^( - 1/2) * exp( - x * y/2 - x^2 * y^2/4) * Sum_{k=0..inf}(1 + x)^binomial(k + 1, 2) * exp( - x^2 * y * k^2/(2 * (1 + x * y)) + x^2 * y * k/2) * x^k/k!