cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060556 Bisection of triangle A060098: odd-indexed members of column sequences of A060098 (not counting leading zeros).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 12, 16, 4, 1, 20, 50, 32, 5, 1, 30, 120, 140, 55, 6, 1, 42, 245, 448, 316, 86, 7, 1, 56, 448, 1176, 1284, 622, 126, 8, 1, 72, 756, 2688, 4170, 3102, 1113, 176, 9, 1, 90, 1200, 5544, 11550, 12122
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Comments

Row sums give A060557. Column sequences without leading zeros give for m=0..5: A000012 (powers of 1), A002378 = 2*A000217, A004320, 4*A040977, A060558, 2*A060559.
Companion triangle (even-indexed members) A060102.
With offset 1 for n and k, T(n,k) is the number of (1-2-3)-avoiding trapezoidal words of length n that contain n+1-k 1s. A trapezoidal word (following Riordan) is a sequence (a_1,a_2,...,a_n) of integers with 1 <= a_i <= 2i-1. For example, T(3,3)=3 counts 122, 132, 133 and T(4,2)=12 counts 1112, 1113, 1114, 1115, 1116, 1117, 1121, 1131, 1141, 1151, 1211, 1311. - David Callan, Aug 25 2009

Examples

			{1}; {1,2}; {1,6,3}; {1,12,16,4}; ...; Po(3,x) = 3 + x.
		

Formula

a(n, m)= A060098(2*n+1-m, m).
G.f. for column m: (x^m)*Po(m+1, x)/(1-x)^(2*m+1), with Po(n, x) = Sum_{j=0..floor(n/2)} binomial(n, 2*j+1)*x^j (odd members of row n of Pascal triangle A007318).
a(n, m) = Sum_{j=0..floor((m+1)/2)} binomial(n-j+m, 2*m)*binomial(m+1, 2*j+1), n >= m >= 0, otherwise zero.