A060651 Smallest odd prime p such that Q(sqrt(-p)) has class number 2n+1.
3, 23, 47, 71, 199, 167, 191, 239, 383, 311, 431, 647, 479, 983, 887, 719, 839, 1031, 1487, 1439, 1151, 1847, 1319, 3023, 1511, 1559, 2711, 4463, 2591, 2399, 3863, 2351, 3527, 3719, 3119, 5471, 2999, 4703, 6263, 4391, 3671, 3911, 4079, 5279, 6311, 4679
Offset: 0
Keywords
Programs
-
Mathematica
<< NumberTheory`NumberTheoryFunctions` a = Table[0, {101}]; Do[ c = ClassNumber[ -Prime[n] ]; If[ c < 102 && a[ [c] ] == 0, a[ [c] ] = Prime[n] ], {n, 2, 4000} ]; Table[ a[ [n] ], {n, 1, 101} ] a = Table[0, {101}]; Do[c = NumberFieldClassNumber[Sqrt[-Prime[n]]]; If[c < 102 && a[[c]] == 0, a[[c]] = Prime[n]], {n, 2, 4000}]; Select[ Table[a[[n]], {n, 1, 101}], Mod[#, 4] == 3 &] (* Jean-François Alcover, Jul 20 2022 *)
-
PARI
a(n) = forprime(p=3, oo, if ((p % 4) == 3, if (qfbclassno(-p) == 2*n+1, return(p)))); \\ Michel Marcus, Jul 20 2022
Formula
Extensions
Offset corrected by Michel Marcus, Jul 20 2022
Comments